HAp/TiO2 nanocomposites: Influence of TiO2 on microstructure and mechanical properties

2019 ◽  
Vol 54 (6) ◽  
pp. 765-772 ◽  
Author(s):  
Ajay Kumar Vemulapalli ◽  
Rama Murty Raju Penmetsa ◽  
Ramanaiah Nallu ◽  
Rajesh Siriyala

Hydroxyapatite is a very attractive material for artificial implants and human tissue restorations because they accelerate bone growth around the implant. The hydroxyapatite nanocomposites (HAp/TiO2) were produced by using high energy ball milling. X-ray diffraction studies revealed the formation of HAp and TiO2 composites. Cubic-like crystals with boundary morphologies were observed; it was also found that the grain size gradually increased with the increase in TiO2 content. It was found that the mechanical properties (hardness, Young's modulus, fracture toughness, flexural strength, and compression strength)of the composites significantly improved with the addition of TiO2, which was sintered at 1200℃. These properties were then also correlated with the microstructure of the composites. This paper investigates the effect of titania (TiO2 = 0, 5, 10, 15, 20, and 25 wt%) addition on the microstructure and mechanical properties of hydroxyapatite (Ca10(PO4)6(OH)2) nanocomposites.

Clay Minerals ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 403-412
Author(s):  
Nedjima Bouzidi ◽  
Athmane Bouzidi ◽  
Raphael Oliveira Nunes ◽  
Djoudi Merabet

ABSTRACTThe present study examined the microstructure and mechanical properties of ceramic composites based on a kaolin from Djebel Debbagh, northeast Algeria, composed mainly of kaolinite and halloysite with the addition of various amounts of BaCO3. The composites were prepared by high-energy ball milling and sintered at 1100°C and 1200°C for 3 h. The samples sintered at 1200°C without BaCO3were composed mainly of mullite, which disappeared with increasing BaCO3content. X-ray diffraction investigation showed the presence of hexacelsian (BaAl2SiO6and BaAl2Si2O8), which disappeared at BaCO3contents >50 wt.% in favour of barium aluminium and barium silicate phases. At 40 wt.% BaCO3content, the porosity of the composites decreased from 0.7% to 0.1% and the microhardness increased from 7 to 8 GPa, respectively, at 1100°C and 1200°C due to the amorphous phase.


2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


2011 ◽  
Vol 704-705 ◽  
pp. 1095-1099
Author(s):  
Peng Liu ◽  
Hao Ran Geng ◽  
Zhen Qing Wang ◽  
Jian Rong Zhu ◽  
Fu Sen Pan ◽  
...  

Effects of AlN addition on the microstructure and mechanical properties of as-cast Mg-Al-Zn magnesium alloy were investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and tensile testing. Five different samples were made with different amounts of AlN(0wt%, 0.12wt%, 0.30wt%, 0.48wt%, 0. 60wt%). The results show that the phases of as-cast alloy are composed of α-Mg,β-Mg17Al12. The addition of AlN suppressed the precipitation of the β-phase. And, with the increase of AlN content, the microstructure of β-phase was changed from the reticulum to fine grains. When AlN content was up to 0.48wt% in the alloy, the β-phase became most uniform distribution. After adding 0.3wt% AlN to Al-Mg-Zn alloy, the average alloy grain size reduced from 102μm to 35μm ,the tensile strength of alloy was the highest. The average tensile strength increased from 139MPa to 169.91MPa, the hardness increased from 77.7HB to 98.4HB, but the elongation changes indistinctively. However, when more amount of AlN was added, the average alloy grain size did not reduce sequentially and increased to 50μm by adding 0.6wt% AlN and the β-phase became a little more. Keywords: Al-Mg-Zn alloy; AlN; β-Mg17Al12; Tensile strength


2010 ◽  
Vol 434-435 ◽  
pp. 173-177 ◽  
Author(s):  
Bao Xia Ma ◽  
Wen Bo Han ◽  
Xing Hong Zhang

Ternary ZrC-SiC-ZrB2 ceramic composites were prepared by hot pressing at 1900 °C for 60 min under a pressure of 30 MPa in argon. The influence of ZrB2 content on the microstructure and mechanical properties of ZrC-SiC-ZrB2 composites was investigated. Examination of SEM showed that the microstructure of the composites consisted of the equiaxed ZrB2, ZrC and SiC grains, and there was a slight tendency of reduction for grain size in ZrC with increasing ZrB2 content. The hardness increased considerably from 23.3 GPa for the ZS material to 26.4 GPa for the ZS20B material. Flexural strength was a strong function of ZrB2 content, increasing from 407 MPa without ZrB2 addition to 627 MPa when the ZrB2 content was 20vol.%. However, the addition of ZrB2 has little influence on the fracture toughness, ranging between 5.5 and 5.7 MPam1/2.


2012 ◽  
Vol 723 ◽  
pp. 233-237 ◽  
Author(s):  
Tong Chun Yang ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou ◽  
Hong Tao Zhu ◽  
...  

TiB2-(W,Ti)C composites with (Ni,Mo) as sintering additive have been fabricated by hot-pressing technique, and the microstructure and mechanical properties of the composites have been investigated. (Ni,Mo) promotes grain growth of the composites. In the case of 7vol.% (Ni,Mo), the grain size decreases consistently with an increase in the content of (W,Ti)C. When the proper content of (W,Ti)C is added to TiB2 composites, the growth of matrix grains is inhibited and the mechanical properties of the composites are improved. The best mechanical properties of the composites are 1084.13MPa for three-point flexural strength, 7.80MPa•m 1/2 for fracture toughness and 17.92GPa for Vickers hardness.


2011 ◽  
Vol 287-290 ◽  
pp. 1933-1937 ◽  
Author(s):  
Mei Lin Gu ◽  
Jian Hua Zhang ◽  
Zhi Wei

TiB2/TiN composites with various content of Ni and Mo as sintering aid were hot-pressed at 1530°C. Effect of the content of sintering aid on microstructure and mechanical properties is investigated. Experimental results show that the fracture toughness of the composites increases consistently with an increase in the sintering aid content, however, the flexural strength gets to the maximum when the content of sintering aid is 10vol%. A new eutectic phase of MoNi can be found in the composites by X-ray diffraction (XRD) when the amount of sintering aid is over 7vol%. Scan electron microscope (SEM) analysis shows that the density of the composites increases consistently with the increasing of the sintering aid. But the abnormal-growth grains can be found and deteriorates the flexural strength in the composite No.4 because of the excessive sintering aid.


2013 ◽  
Vol 750-752 ◽  
pp. 667-670
Author(s):  
C.J. Li ◽  
L. Teng ◽  
J. Tan ◽  
Q. Yuan ◽  
J.J. Tang ◽  
...  

Cu90Zr10 alloy powder was prepared by high-energy ball milling. The microstructure and property evolution of this alloy powder during mechanical alloying (MA) were investigated by using X-ray diffraction and optical microscopy (OM). The alloy powder with an average grain size of 10 - 40 nm was obtained, and the grain size was found to decrease gradually with increasing milling time. The microhardness reached a maximum value (about 295 Hv) after 30 h milling. The internal microstrain and the microhardness of the samples increased due to the grain refinement and solid solution during milling, and 10at.% Zr could be brought into Cu lattice by solid solution during MA. At last, the mechanisms of strengthening were discussed.


2002 ◽  
Vol 11 (6) ◽  
pp. 096369350201100 ◽  
Author(s):  
I. J. Davies ◽  
G. Pezzotti ◽  
A. Bellosi ◽  
D. Sciti ◽  
S. Guicciardi

The microstructure and mechanical properties of hot-pressed alumina (Al2O3) matrix composites containing 20, 35, or 50 vol% of nickel aluminide (NiAl) were investigated. The mean Al2O3 grain size was found to decrease from approximately 2.0 μm (monolithic Al2O3) to 1.0 μm for the composite containing 50 vol% NiAl. Composite flexural strength values were lower than both the monolithic Al2O3 and NiAl and attributed to the weakly bonded NiAl particles acting as flaw origins. In contrast to this, the fracture toughness increased with NiAl volume fraction to a maximum of 4.90 MPa·m1/2, thus confirming the toughening effect of NiAl addition on Al2O3 ceramics, with the slope of the rising R-curve for the composite being approximately 8 times that of monolithic Al2O3.


2016 ◽  
Vol 849 ◽  
pp. 295-301 ◽  
Author(s):  
Yan Feng Li ◽  
Xue Feng ◽  
Xun Jun Mi ◽  
Xiang Qian Yin ◽  
Xiao Yu Kang

The microstructure and mechanical properties of TiNiFe alloys with different compositions was investigated by tensile test, X-ray diffraction, EBSD, SEM, and TEM. The results indicated that tensile strength rapidly increased with increasing Ni content. In addition, Ti2(Ni,Fe) particles were observed in the TiNiFe alloys, which affected the mechanical properties. Increasing the content of Ni had little influence on the grain size of TiNiFe alloys. With the replacement of Ni by Fe, the lattice constant of TiNiFe alloys decreased as the Ni content increased.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
In-Jin Shon ◽  
In-Yong Ko ◽  
Seung-Hoon Jo ◽  
Jung-Mann Doh ◽  
Jin-Kook Yoon ◽  
...  

Nanopowders of 3NiAl and Al2O3were synthesized from 3NiO and 5Al powders by high-energy ball milling. Nanocrystalline Al2O3reinforced composite was consolidated by high-frequency induction-heated sintering within 3 minutes from mechanochemically synthesized powders of Al2O3and 3NiAl. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. The relative density of the composite was 97%. The average Vickers hardness and fracture toughness values obtained were 804 kg/mm2and 7.5 MPa⋅m1/2, respectively.


Sign in / Sign up

Export Citation Format

Share Document