Effect of Size of Cellulose Particle as Filler in the PVC Biocomposites on their Thermal and Mechanical Properties

2013 ◽  
Vol 737 ◽  
pp. 67-73 ◽  
Author(s):  
Muhammad Ghozali ◽  
Agus Haryono

The combination between synthetic polyolefin with natural polymer such as cellulose, starch and chitosan can stimulate biodegradation processes of waste plastics such as polyethylene (PE), polypropylene (PP) and other conventional plastics. In this work, PVC (polyvinyl chloride) biocomposite was prepared by compounding cellulose particle into PVC matrix in the presence of PVC-g-maleic anhydride as a compatibilizer. Cellulose nanoparticles were prepared by physical top-down method after milling by using High-Energy Ball-mill. The diameter size of cellulose nanoparticle was obtained as 170 nm. Cellulose particles were added as filler with ratio of 10-30 phr in PVC matrix. PVC biocomposites was prepared as a sheet film with the thickness of 0.3 mm by hot-press method. The addition of cellulose particle into PVC matrix was examined in various filler volumes and various cellulose particle sizes. The obtained PVC composite films were characterized by means of Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA) and Fourier-Transformed Infrared (FTIR) spectroscopy. The rheological and mechanical properties of PVC and cellulose composites were investigated as a function of surface structure and filler volume fraction.

2013 ◽  
Vol 745-746 ◽  
pp. 281-285
Author(s):  
Y.B. Yuan ◽  
Rui Xiao Zheng ◽  
Su Jing Ge ◽  
Han Yang ◽  
Chao Li Ma

Al86Ni7Y4.5Co1La1.5 (at.%) alloy powder was produced by argon gas atomization process. After high-energy ball milling, the powder was consolidated and extruded by using vacuum hot press sintering under different process conditions, sintering temperature, extrusion pressure, sintering time, etc.. The microstructure and morphology of the powder and consolidated bulk alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The phase transformation of the powder was investigated by differential scanning calorimetry (DSC). Mechanical properties of the consolidated bulk alloy were examined. The results showed that as the milling time increase, the volume fraction of amorphous materials and the hardness and yield strength of the bulk alloy were obvious improved.


2020 ◽  
Vol 20 (7) ◽  
pp. 4253-4256
Author(s):  
Seong-Eun Kim ◽  
Jin-Kook Yoon ◽  
In-Jin Shon

Nb2O5 and Zr powders at a molar ratio of 1:2.5 were milled using a high-energy ball mill. The mixture powders produced Nb and ZrO2 nanopowders through a solid replacement reaction (Nb2O5+ 2.5Zr 2Nb + 2.5ZrO2). The synthesized nanopowders were consolidated via high-frequency induction heated sintering (HFIHS) within two min. The mechanical properties (hardness and fracture toughness) of nanostructured 2Nb–2.5ZrO2 composite were then evaluated. Both the hardness and fracture toughness of the 2Nb–2.5ZrO2 composite were higher than those of monolithic ZrO2.


2021 ◽  
Author(s):  
Dalia Abulyazied ◽  
Asma Alturki ◽  
Rasha Youness ◽  
H. Abomostafa

Abstract In this work, a borosilicate glass sample (5SiO2-45B2O3-20Na2O-25CaO-5Ag2O) was added to nano-sized carbonated hydroxyapatite (CHA) powders with different contents up to 20 wt.% to improve the bioactivity, antibacterial effect, physical and mechanical properties of the resulting nanocomposites. Then, these samples were mixed, milled with a high-energy ball mill, sintered at 700°C and subjected to X-ray diffraction (XRD) technique, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) to examine their structure, chemical composition and microstructure, respectively. Furthermore, the physical and mechanical properties of the sintered nanocomposites were also measured. Moreover, the in vitro bioactivity of the prepared nanocomposites was examined with XRD and SEM. Additionally, the antibacterial behavior of these samples was tested against E. coli and S. aureus by the disc-diffusion method. The results obtained pointed out that the sample with the highest content of BG possessed the best bioactivity, antibacterial effect, physical and mechanical properties.


2021 ◽  
Author(s):  
Asma M. Alturki ◽  
Dalia E. Abulyazied ◽  
Mohammed Taha ◽  
H. M. Abomostafa ◽  
Rasha A. Youness

Abstract The aim of this work is to prepare nanocomposites with excellent bioactivity and appropriate mechanical properties. In this regard, the nanocomposites, with different contents of borosilicate glass (BG) and carbonated hydroxyapatite (CHA), were mixed and milled using a high-energy ball mill. Then, these milled powders were subjected to sintering at 750 ºC. In order to examine their phase composition, molecular structure and microstructure, X-ray diffraction (XRD) technique, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), respectively were used. Moreover, the DC electrical conductivity, and physical and mechanical properties of the prepared nanocomposites were also measured. In addition, the in vitro bioactivity of the sintered samples was evaluated using XRD and SEM. Unexpectedly; the results indicated that the successive increase in BG contents promoted the partial decomposition of CHA molecules at this lower sintering temperature. Also, it was responsible for the enhanced bioactivity behavior along with giving CHA better mechanical properties. However, the electrical conductivity of the examined samples exhibited an opposite trend where it decreased significantly with increasing BG content. According to the results obtained, the prepared samples are suitable for use in various biomedical applications.


2011 ◽  
Vol 399-401 ◽  
pp. 377-380
Author(s):  
Yan Hua Fan ◽  
Li Hua Dong ◽  
Bo Yang Liu ◽  
Yan Sheng Yin

CNTs-TiAl/B4C composite has been obtained by high energy ball milling and hot press sintering. These technical process promoted the solid reaction and resulted in the formation of composites comprising Ti-Al, TiC, TiB2 and B4C. The SEM images and measurement of the mechanical properties proved that the addition of 1.5wt.% CNTs further improves the fracture toughness and the bending strength of TiAl/B4C composites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Özge Balcı ◽  
Merve Buldu ◽  
Ameen Uddin Ammar ◽  
Kamil Kiraz ◽  
Mehmet Somer ◽  
...  

AbstractBoron carbide powders were synthesized by mechanically activated annealing process using anhydrous boron oxide (B2O3) and varying carbon (C) sources such as graphite and activated carbon: The precursors were mechanically activated for different times in a high energy ball mill and reacted in an induction furnace. According to the Raman analyses of the carbon sources, the I(D)/I(G) ratio increased from ~ 0.25 to ~ 0.99, as the carbon material changed from graphite to active carbon, indicating the highly defected and disordered structure of active carbon. Complementary advanced EPR analysis of defect centers in B4C revealed that the intrinsic defects play a major role in the electrochemical performance of the supercapacitor device once they have an electrode component made of bare B4C. Depending on the starting material and synthesis conditions the conductivity, energy, and power density, as well as capacity, can be controlled hence high-performance supercapacitor devices can be produced.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
In-Jin Shon ◽  
In-Yong Ko ◽  
Seung-Hoon Jo ◽  
Jung-Mann Doh ◽  
Jin-Kook Yoon ◽  
...  

Nanopowders of 3NiAl and Al2O3were synthesized from 3NiO and 5Al powders by high-energy ball milling. Nanocrystalline Al2O3reinforced composite was consolidated by high-frequency induction-heated sintering within 3 minutes from mechanochemically synthesized powders of Al2O3and 3NiAl. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. The relative density of the composite was 97%. The average Vickers hardness and fracture toughness values obtained were 804 kg/mm2and 7.5 MPa⋅m1/2, respectively.


Sign in / Sign up

Export Citation Format

Share Document