Micromechanical Analysis of Single-Fiber Pull-Out Test of Fiber-Reinforced Viscoelastic Matrix Composites

2011 ◽  
Vol 399-401 ◽  
pp. 556-560 ◽  
Author(s):  
Da Sheng Zhu ◽  
Bo Qin Gu

A micromechanical model for single-fiber pull-out test of fiber-reinforced viscoelastic matrix composites is established. It includes fiber, interphase and viscoelastic matrix. The formulas to calculate the fiber axial stress, the interphase shear stress, and the matrix axial and shear stress are obtained. Moreover, for Kevlar aramid fiber reinforced viscoelastic matrix composites, the influences of the interphase thickness, the fiber embedded length and volume fraction on the stress distributions of fiber and interphase is studied. Some analysis results show that, with the increase of normalized fiber axial distance, the fiber axial stress increases monotonically, but the interphase shear stress decreases. The stress distributions of fiber and interphase change with the variation of the interphase thickness, the fiber embedded length and volume fraction.

1997 ◽  
Vol 6 (4) ◽  
pp. 096369359700600 ◽  
Author(s):  
S. Feih ◽  
P. Schwartz

This work analyses the stress distributions during the pull-out test and the microbond test by FEA. Both tests are found to lead to the same results. The simulation result predicts the in praxis calculated IFSS value. Fiber coating leads to a more uniform shear stress distribution.


2014 ◽  
Vol 591 ◽  
pp. 103-107 ◽  
Author(s):  
R. Panneerdhass ◽  
R. Baskaran ◽  
K. Rajkumar ◽  
A. Gnanavelbabu

This paper presents the study of the tensile, compressive, flexural, impact energy and water absorption characteristics of the luffa fiber reinforced expoxy polymer composites. Luffa fiber reinforced epoxy resin matrix composites have been developed by hand lay-up technique with varying process parameters such as fiber condition (treated and untreated), chopped randomly oriented and different volume fraction (30%, 40% and 50%). Tensile strength varies from 9 MPa to 20 MPa, compressive strength varies from 75 MPa to 105 MPa, flexural strength varies from 15 MPa to 140 MPa and impact energy varies from 0.25 Joules to 1.45 Joules, as a function of fiber volume fraction. The optimum mechanical properties were obtained at 40% of fiber volume fraction of treated fiber composites. Fracture surface of the composite shows that pull out and de-bonding of fiber is occurred.


2014 ◽  
Vol 906 ◽  
pp. 167-177 ◽  
Author(s):  
Hou Lei Gan ◽  
Lei Tian ◽  
Chang Hai Yi

Abstract: The Interface of sisal fiber which was treated by using alkali, potassium permanganate, atmospheric plasma and silane reinforced polypropylene composites were investigated by single fiber pull-out testes and surface morphology were studied. The results indicated that the morphological changes observed on the sisal fiber surface were obviously evident. Untreated, permanganate and plasma treated sisal fiber reinforced PP show a stable debonding process. Silane treated sisal fiber reinforced PP show an unstable debonding process. Single fiber pull-out tests indicated that the IFSS value was in the order of FIB < FIBKMnO4 < FIBP < FIBKH-550 < FIBKH-570. As can be seen from surface morphology of pull-out fiber, a little of PP resin was adhered to the pull-out FIB, FIBKMnO4, FIBP of sisal fiber. In contrast, PP resin at the surface of pull-out fiber was flaked off and sisal fibril was drawn out from sisal fiber were observed from pull-out fibers of FIBKH-550 and FIBKH-570.


1996 ◽  
Vol 63 (2) ◽  
pp. 321-326 ◽  
Author(s):  
F. Hild ◽  
P.-L. Larsson ◽  
F. A. Leckie

Fiber pull-out is one of the fracture features of fiber-reinforced ceramic matrix composites. The onset of this mechanism is predicted by using continuum damage mechanics, and corresponds to a localization of deformation. After deriving two damage models from a uniaxial bundle approach, different configurations are analyzed through numerical methods. For one model some very simple criteria can be derived, whereas for the second one none of these criteria can be derived and the general criterion of localization must be used.


1996 ◽  
Vol 458 ◽  
Author(s):  
B. S. Majumdar ◽  
S. G. Warrier ◽  
D. B. Miracle

ABSTRACTThe effects of the interface on the tension and fatigue crack growth behavior of fiber-reinforced titanium matrix composites were studied using single-ply and single-fiber SiC/Ti-6Al-4V mini-composites with different SiC fibers and coatings. Attention was focused on fiber failure mechanisms in the absence of a matrix crack (tension loading), and on fatigue crack deceleration mechanisms. In contrast to established models of tensile failure, local load sharing behavior was observed for very weak interfaces, with plasticity playing a major role in enhancing stress concentration effects. The approach included statistical evaluation of fiber breaks, their locations, and comparisons between single-fiber and single-ply composites. Under fatigue loading, crack deflection behavior was found to be consistent with a strength based interface debonding model. Crack shielding through modulus mismatch was found to have a significant effect on crack growth rates, independent of bridging conditions, with a stronger interface performing better under such conditions. The ramifications of the different mechanisms on interface optimization for longitudinal and transverse properties of composites are indicated.


2008 ◽  
Vol 368-372 ◽  
pp. 710-712 ◽  
Author(s):  
Zhi Wang ◽  
Guo Pu Shi ◽  
Xiang Sun ◽  
Xian Qin Hou

Mullite fiber reinforced alumina ceramic matrix composites (MFACC) were prepared using CaO-MgO-SiO2 (CMS) and TiO2 as sintering aids. The effects of the contents of sintering aids and mullite fiber on the density and sintering temperature of MFACC are studied. The results showed that when the CMS content is 8.0% and the TiO2 content is 1.0%, the density of the as-sintered MFACC is 98.9%. When the mullite fiber content is 15.0% and the sintering temperature is 1450 °C, the flexural strength of the resultant composite increases to 504.5MPa, 70.7% higher than the original matrix, and the relative density of the composites reaches 98.4%. The reinforcement mechanisms are fibers pull-out and sticky point.


1991 ◽  
Vol 6 (11) ◽  
pp. 2463-2473 ◽  
Author(s):  
C.C. Yang ◽  
T. Mura ◽  
S.P. Shah

The mechanism of fracture arrest in brittle-matrix composites with strong, long fibers is analyzed by using the inclusion method. The maximum stress contribution of the matrix in composites is discussed in this paper. A critical volume fraction of fibers fc is theoretically derived. If the volume fraction f is less than fc, then debonding between fibers and matrix occurs before the crack propagates through the whole section. If f is greater than fc, then no debonding occurs before the crack propagates through the whole section. The value of fc depends on the matrix and fiber properties and the bond character of the interface. To verify the analytical predictions, experiments on fiber reinforced cement composites subjected to uniaxial tension were conducted. The results of the theoretical predictions were also compared satisfactorily with other published experimental data.


2010 ◽  
Vol 163-167 ◽  
pp. 4599-4603
Author(s):  
Wen Liang Zhu ◽  
Dong Mei Luo ◽  
Ying Long Zhou ◽  
Wen Xue Wang

An improved shear-lag analytical model has been established to study stress transfer in carbon nanotube (CNT) reinforced polymer matrix composites with and without debonding interface. The Poisson’s effect and radial effect of matrix is considered in the model for the first time, and a simplified 2D representative volume element (RVE) is modeled using a four-phase composite composed of matrix, nanotube, bonded, and debonded interfaces in this analysis, and the axial stress for CNT and matrix and interfacial shear stress along the CNT is predicted. The results show that load transfer efficiency in CNT reinforced composites is affected by the debonding length, and the abrupt change of shear stress is existent at the tip of debonding interface.


Sign in / Sign up

Export Citation Format

Share Document