Research on Environment of Dwellings with Rammed Earth Walls in Deqin Area in Yunnan Province

2012 ◽  
Vol 424-425 ◽  
pp. 957-961
Author(s):  
Li Ping Li

Based on the field testing and analysis of the Tibetan dwelling in Deqin area , and more specifically, the indoor temperature of Tibetan-style dwellings with rammed earth walls as well as the surface temperature of building envelope were tested and comparatively analyzed. The test results show the current situations and features of indoor temperature changes of Tibetan-style dwellings of earth materials, the heat-insulation performance and heat stability of rammed earth wall, which may provide a basis for improving the thermal environment of Tibetan-style dwellings.

2011 ◽  
Vol 255-260 ◽  
pp. 1632-1638 ◽  
Author(s):  
Li Ping Li

Field tests for indoor thermal environment of Tibetan-style dwellings of different materials in Shangri-La in winter were carried out from the perspective of physical environment of buildings, and more specifically, the indoor temperature of Tibetan-style dwellings with rammed earth walls and brick walls as well as the surface temperature of building envelope were tested and comparatively analyzed. The test results show the current situations and features of indoor temperature changes of Tibetan-style dwellings of different materials, which may provide a basis for improving the thermal environment of Tibetan-style dwellings.


2013 ◽  
Vol 651 ◽  
pp. 466-469
Author(s):  
Li Ping Li ◽  
He Wang ◽  
Shuai Fan

Field tests for indoor thermal environment of Tibetan-style timber dwellings in Shangri-La were carried out, from the perspective of physical environment of buildings, and more specifically, the indoor temperature of Tibetan-style timber dwellings as well as the surface temperature of building envelope were tested and comparatively analyzed. The test results show the current situations and features of indoor temperature changes of Tibetan-style timber dwellings, which may provide a basis for improving the thermal environment of Tibetan-style dwellings.


2012 ◽  
Vol 450-451 ◽  
pp. 969-973
Author(s):  
Li Ping Li

Field tests for indoor thermal environment of dwellings of different renewable materials under different geographical climate conditions were carried out, and more specifically, the indoor temperature of dwellings with different renewable material walls as well as the surface temperature of building envelope were tested and comparatively analyzed. The test results show the current situations and features of indoor temperature changes of the dwellings of different materials, which may provide a basis for improving the thermal environment of dwellings.


Author(s):  
J. Moya-Muñoz ◽  
A. Gonzalez-Serrano ◽  
F. Pinto-Puerto

Abstract. During the Nasrid Kingdom of Granada, the alcazaba of Oria (Old citadel) was considered one of the most outstanding medieval defensive ensembles in the province of Almeria. This defensive complex, located in the Almanzora Valley at an altitude of over a thousand metres, was built around the 12th-14th centuries and has been registered as an Asset of Cultural Interest since 1985. Nevertheless, unfortunate decisions to intervene in the monument and lack of maintenance facilitated the loss of most of its wall, which had been preserved until the twentieth century. Despite the critical situation of the complex, two sections of the rammed-earth wall are currently identified as standing. This study represents an opportunity to broaden the knowledge of this relevant wall structure and the characterisation of the rammed-earth reinforced wall with lime mortar layers. As a preliminary step towards the rammed-earth walls analysis, the graphic representation of wall elevations by photogrammetry tools is proposed. This technique allows to graphically define the morphology of the rammed-earth wall, to perform its typological analysis and constructive characterisation; and furthermore, to evaluate the state of constructive elements conservation by means of the identification of its damages. The information and results obtained will allow to establish the appropriate laboratory tests for the rammed-earth materials characterisation and to define a report that justifies the inexcusable need to consolidate and preserve them.


2014 ◽  
Vol 18 (3) ◽  
pp. 889-902 ◽  
Author(s):  
Manoj Singh ◽  
Sadhan Mahapatra ◽  
Jacques Teller

Indoor thermal environment monitoring has been done in 20 residential buildings of Liege city followed by questionnaire based comfort survey amongst the occupants of 85 houses in order to record their preference and expectations about indoor thermal environment in winter and spring season. It is found from the analysis that change of glazing has a minimum or even sometimes an adverse effect on the existing indoor environment due to the absence of proper insulation of the rest of the building envelope. It is observed that in winter there is a sudden drop in indoor temperature and also overheating in summer. This is due to unplanned installation of glazing which actually increases the fenestration area ratio leading to higher indoor temperature fluctuation and causes discomfort. It is also important that the occupant?s preference and expectations as well as overall assessment of indoor environment needs to be consider towards energy efficiency improvement.


2018 ◽  
Vol 22 (Suppl. 4) ◽  
pp. 1143-1155
Author(s):  
Vesna Lovec ◽  
Milica Jovanovic-Popovic ◽  
Branislav Zivkovic

The conducted research examines the thermal behaviour of the rammed earth walls, which is the basic structural and fa?ade element of traditional Vojvodina house. The traditional rammed earth house represents an important part of the total building stock of Vojvodina. Earth is a locally available, cheap, natural, environmentally friendly building material and has been used extensively for traditional family houses in Vojvodina. It has ecological and ?green? characteristics, which can be assessed as very high quality, and they are of significant importance in the context of sustainable development and striving to reduce energy consumption today. The research examines thermal behaviour of rammed earth wall, including theoretical analysis of: the heat transfer coefficient, U, the thermal resistance, R, and thermal conductivity, ?. One of the basic elements of thermal behaviour, the thermal mass, has been analyzed both theoretically and by measuring in situ. The in situ measurements were conducted on the traditional house in Vojvodina by measuring inside and outside surface wall and air temperature in summer. Analyses of rammed earth wall thermal performances have shown that the wall has low thermal conductivity, high heat capacity and significant thermal mass effect which is the key element enabling thermal stability. The research indicates rather good thermal properties of the rammed earth walls. Potential of rammed earth wall in Vojvodina should be an issue of further analysis, although the possibility of improvement of existing facilities to meet current standards in terms of energy efficiency should be considered.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Xinlei Yang ◽  
Hailiang Wang ◽  
Ziliang Zhao

Rammed earth is widely utilized in both developed and developing countries due to its low embodied energy and good natural moisture buffering of indoor environments. However, its application in seismic active regions was limited owing to its intrinsically low resistance to dynamic actions. This paper presents the test results of four cement-stabilized rammed earth walls with confining tie-column elements under cyclic loading, aiming at assessing the cyclic behavior of proposed rammed earth walls with confining tie-column elements. The test results revealed that the proposed confining tie-column elements could significantly improve the cyclic behavior of cement-stabilized rammed earth wall, exhibiting good strength and ductility.


2019 ◽  
Vol 11 (3) ◽  
pp. 687 ◽  
Author(s):  
Guoqiang Xu ◽  
Hong Jin ◽  
and Jian Kang

The Mongolian yurt is a circular dwelling with a wooden frame enclosed by a lightweight felt envelope. In this study, field experiments were conducted to understand the patterns of temperature changes of the yurt’s indoor thermal environment. The study found that the felt’s low thermal inertia affected the indoor temperature stability, resulting in a large difference between day and night temperatures inside the yurt. The felts adjusted the indoor humidity in the case of large outdoor humidity fluctuations, but when the outdoor humidity was very low, the indoor air was drier. Indoor temperatures were generally lower in the centre and higher in the surrounding peripheral areas, and the main influencing factors included felt seams, gaps between the door and Khana, the ground, and solar radiation. The main factor influencing the temperature of the felt wall’s inner surface was solar radiation. The effects on temperature and humidity when opening the component felt pieces were obvious: humidity adjustment was best with the top felt piece opened; indoor temperature adjustment was best with the gaps between the floor and felt wall pieces closed; and the door curtain was most effective for insulation when the outdoor temperature was low.


2013 ◽  
Vol 726-731 ◽  
pp. 3588-3591
Author(s):  
Li Ping Li ◽  
Shuai Fan

In this paper, the test of the indoor thermal environment for Tibetan Dialogue in Happy Village in winter, that have tested indoor temperature and the temperature of house surface, and contrast to analysis tested parameters. The results of the test show climate characteristics in rammed earth Tibetan Dialogue and variations of temperature effecting indoor thermal comfortable. The proposes and measures be taken out from this test for improving the comfortable of the indoor thermal environment.


2011 ◽  
Vol 374-377 ◽  
pp. 257-262
Author(s):  
Shi Feng ◽  
Wang Wei

An optimal design is taken on the external respiration double skin facade (DSF) of a office building in Wuhan. The indoor thermal environment of the office units in the building have been simulated by taken computational fluid dynamics (CFD) method, and then the paper analyzes the indoor temperature changes under the condition that the internal airflow status of the DSF for natural ventilation, without shade, vents closed and other cases, discusses the influences of different inner glazed skin’s thermal properties, DSF for active ventilation and different wind speed on indoor thermal environment, according to the simulation results we obtain parameters of relevant optimal design.


Sign in / Sign up

Export Citation Format

Share Document