Effect of Strain Rate on the Microstructures and Properties of Hot–Rolled TWIP Steel in the Solution Condition

2012 ◽  
Vol 430-432 ◽  
pp. 256-259 ◽  
Author(s):  
Yang Yang ◽  
Chun Fu Li ◽  
Kai Hong Song

TWIP steel containing 0.21% C, 24.4% Mn, 0.9% Si, 1.84% Al, 4.61% Cr, 1.89% Ni, 0.41% Mo and 0.012% Nb was investigated. Tensile tests of this steel were performed in the strain rate range of 10−4–10−3 s−1. Results indicate that tensile properties of TWIP steel at room temperature are sensitive to strain rate in the studied range. Analyses on the relationship between strain–hardening exponent and strain rates show that the formation of twins during deformation greatly affects the strain–hardening behavior of TWIP steels.

2016 ◽  
Vol 1812 ◽  
pp. 41-46
Author(s):  
Elvira García-Mora ◽  
Ignacio Mejía ◽  
Francisco Reyes-Calderón ◽  
José M. Cabrera

ABSTRACTWhen high strength and high ductility are required, the Twinning Induced Plasticity steels are an excellent choice. Their mechanical advantages are perfectly known in the automotive industry. Then, they are currently deeply studied. During the deformation at high temperature, TWIP steel experiences dynamic recrystallization. This mechanism results from dislocation interactions, and it depends of temperature, stress, strain, and strain rate. Experimental data give the maximum stress reached by the material, but the critical stress which determinates the DRX onset must be calculated from the strain hardening rate. Both stress and strain change simultaneously, and this variation gives the analytic data to determine σc, which is located at the inflection point of θ-σ plot. The main purpose of this paper was to study how the chemical composition and the experimental parameters (temperature and strain rate) affect the DRX, by the calculation and analysis of the σc values. Hot compression tests were applied to a pair of TWIP steels to compare the DRX onset and its relationship with the vanadium addition. The experimental variables were temperature and strain rate. The true stress–true strain plots were used to calculate σc by cutting data up to a previous point before the σp value, then, a polynomial fit and derivation were applied. The Zener-Hollomon parameter (Z) versus the stresses (peak and critical) plots show how the micro-alloying element vanadium improves the strain hardening in the analyzed TWIP steels.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5259
Author(s):  
Krzysztof Żaba ◽  
Tomasz Trzepieciński ◽  
Stanislav Rusz ◽  
Sandra Puchlerska ◽  
Maciej Balcerzak

This article presents a study on the effect of strain rate, specimen orientation, and plastic strain on the value and distribution of the temperature of dog-bone 1 mm-thick specimens during their deformation in uniaxial tensile tests. Full-field image correlation and infrared thermography techniques were used. A titanium-stabilised austenitic 321 stainless steel was used as test materials. The dog-bone specimens used for uniaxial tensile tests were cut along the sheet metal rolling direction and three strain rates were considered: 4 × 10−3 s−1, 8 × 10−3 s−1 and 16 × 10−3 s−1. It was found that increasing the strain rate resulted in the intensification of heat generation. High-quality regression models (Ra > 0.9) developed for the austenitic 321 steel revealed that sample orientation does not play a significant role in the heat generation when the sample is plastically deformed. It was found that at the moment of formation of a necking at the highest strain rate, the maximum sample temperature increased more than four times compared to the initial temperature. A synergistic effect of the strain hardening exponent and yield stress revealed that heat is generated more rapidly towards small values of strain hardening exponent and yield stress.


2012 ◽  
Vol 1373 ◽  
Author(s):  
F. Reyes-Calderón ◽  
I. Mejía ◽  
J.M. Cabrera

ABSTRACTThe present research work analyses the influence of microalloying elements (B, Nb, V and Ti) on the tensile strength and the strain hardening behavior of a high-manganese TWIP steel. The analysis was carried out by means of true stress-true strain curves derived from uniaxial tension tests. The work hardening exponent was determined by using the Hollomon and differential Crussard-Jaoul models. Metallographic characterization was carried out to determine the metallurgical changes associated with n values. The results indicate that the Hollomon analysis results in strain hardening exponent values up to 0.46. On the other hand, the differential Crussard-Jaoul analysis establishes a clear distinction of n value for two stages of plastic deformation which are determined by a sharp slope change in the plot of ln(dσ/dε)-lnε.


2005 ◽  
Vol 297-300 ◽  
pp. 905-911 ◽  
Author(s):  
Xu Chen ◽  
Li Zhang ◽  
Masao Sakane ◽  
Haruo Nose

A series of tensile tests at constant strain rate were conducted on tin-lead based solders with different Sn content under wide ranges of temperatures and strain rates. It was shown that the stress-strain relationships had strong temperature- and strain rate- dependence. The parameters of Anand model for four solders were determined. The four solders were 60Sn-40Pb, 40Sn-60Pb, 10Sn-90Pb and 5Sn-95Pb. Anand constitutive model was employed to simulate the stress-strain behaviors of the solders for the temperature range from 313K to 398K and the strain rate range from 0.001%sP -1 P to 2%sP -1 P. The results showed that Anand model can adequately predict the rate- and temperature- related constitutive behaviors at all test temperatures and strain rates.


2014 ◽  
Vol 783-786 ◽  
pp. 761-765 ◽  
Author(s):  
Dan Wang ◽  
Kun Wang ◽  
Zi Mu Shi ◽  
Fu Sheng Han

A directionally solidified TWIP steel (Fe-25Mn-2.5Al-2.5Si) was prepared by liquid metal cooling technology. The microstructure and mechanical behavior were examined and compared with usually solidified samples. The directionally solidified TWIP steel shows a typical columnar grain structure, and the maximum true stress and true strain along the longitudinal direction of the sample are 1060MPa and 71% respectively. As a comparison, the usually solidified samples shows an equiaxed grain microstructure with the maximum true stress and true strain of only 994MPa and 58%, respectively. Moreover, the two solidification modes also lead to very different strain hardening behavior, particularly in the changes of strain hardening rate with strain. This suggests that the grain boundary plays a key role in the mechanical properties of TWIP steels, and changing the grain boundaries can be effective to improve the comprehensive mechanical properties of TWIP steels.


2020 ◽  
Vol 184 ◽  
pp. 01004
Author(s):  
L Jayahari ◽  
K Nagachary ◽  
Chandra Ch Sharath ◽  
SM Hussaini

There is an increase in demand for new alloys in aerospace, power generation and nuclear industries. Nickel Based super alloys are known for having distinctive properties which are best suitable for these industries. In this study Nickel based super alloy Inconel 718, is used. Over the many years of intense research and development, these alloys have seen considerable evolution in their properties and efficiency. Behaviour of materials and its forming characteristics can be precisely analysed by determining anisotropic behaviour and mechanical properties. In the present study, tried to analyse the mechanical properties of Inconel 718 like yield strength (Ys), ultimate tensile strength (UTS), strain hardening exponent (n) and strain hardening coefficient (k). Uni-axial tensile tests were conducted on specimens with various parameters such as orientations, temperature and Strain rate. Anisotropy of Inconel 718 alloy was measured based on measurable parameters. The normal anisotropy parameter (f) and planer anisotropy (Δr) were measured and observed that the anisotropy parametres are incresed with the decrease in temperature.


Author(s):  
Yuanxin Zhou ◽  
Mohammad Monirul Hasan ◽  
Shaik Jeelani

In the present study, effect of vapor grown carbon nanofiber on the mechanical and thermal properties of polypropylene was investigated. Firstly, nanofibers were dry-mixed with polypropylene powder and extruded into filaments by using a single screw extruder. Then the tensile tests were performed on the single filament at the strain rate range from 0.02/min to 2/min. Experiments results show that both neat and nano-phased polypropylene were strain rate strengthening material. The tensile modulus and yield strength both increased with increasing strain rate. Experimental results also show that infusing nanofiber into polypropylene can increase tensile modulus and yield strength, but decrease the failure strain. At the same time, thermal properties of neat and nano-phased polypropylene were characterized by TGA. TGA results have showed that the nanophased system is more thermally stable. At last, a nonlinear constitutive equation has been developed to describe strain rate sensitive behavior of neat and nano-phased polypropylene.


Author(s):  
Aly El Domiaty ◽  
Abdel-Hamid I. Mourad ◽  
Abdel-Hakim Bouzid

One of the most significant approaches for predicting formability is the use of forming limit diagrams (FLDs). The development of the generalized model integrates other models. The first model is based on Von-Misses yield criterion (traditionally used for isotropic material) and power law constitutive equation considering the strain hardening exponent. The second model is also based on Von-Misses yield criterion but uses a power law constitutive equation that considers the effect of strain rate sensitivity factor. The third model is based on the modified Hill’s yield criterion (for anisotropic materials) and a power law constitutive equation that considers the strain hardening exponent. The current developed model is a generalized model which is formulated on the basis of the modified Hill yield criterion and a power law constitutive equation considering the effect of strain rate. A new controlling parameter (γ) for the limit strains was exploited. This parameter presents the rate of change of strain rate with respect to strain. As γ increases the level of the FLD raises indicating a better formability of the material.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1221-1227
Author(s):  
JIN-YOUNG KIM ◽  
IN-OK SHIM ◽  
SOON-HYUNG HONG

The effects of microstructures of Ti -6 Al -4 V alloy on the flow stresses and fracture behaviors at quasi-static and dynamic deformation conditions were investigated. Specimens of different sizes and fractions of α globules in equiaxed and bimodal structures were compressed at the strain rate of 2×10−3/ s and 3×103/ s using hydraulic testing machine and split Hopkinson pressure bar, respectively. The a globule size in equiaxed structure changed the level of flow stresses, but did not affect the strain hardening characteristics. Meanwhile, the volume fraction of α globule (or lamellar phase) in bimodal structures influenced both the flow stress and strain hardening exponent at quasi-static and dynamic deformation conditions. Bimodal structure of 50% lamellar fraction is considered to be more favorable in dynamic deformation condition at strain rate regime of 3×103/ s than equiaxed or bimodal one having higher lamellar fraction.


Sign in / Sign up

Export Citation Format

Share Document