Effect of Substrate Temperature on High Rate Deposited ZnO:Al Films by Magnetron Sputtering

2012 ◽  
Vol 430-432 ◽  
pp. 480-483
Author(s):  
Wei Min Li ◽  
Hui Ying Hao

A series of ZnO:Al (AZO) thin films was prepared on quartz at different substrate temperature using magnetron sputtering with high deposited rate of 67 nm/min. The structural, electrical and optical properties of these films were investigated as a function of substrate deposition temperature ranging from room temperature to 500 °C. The surface micrograph of AZO film deposited at room temperature was measured by a scanning electron microscope (SEM) and an atomic force microscope (AFM). The results of X-ray diffraction (XRD) test show that all the films have a (002) preferential orientation. The best electrical property was obtained at 500 °C, the resistivity was 9.044×10-4 ohm•cm, and the corresponding carrier concentration and mobility were 3.379×1020 /cm3 and 20.45 m2/Ns, respectively. What's more, all the films show a high optical transmittance.

1994 ◽  
Vol 359 ◽  
Author(s):  
S. Henke ◽  
K.H. Thürer ◽  
S. Geier ◽  
B. Rauschenbach ◽  
B. Stritzker

ABSTRACTOn mica(001) thin C60-films are deposited by thermal evaporation at substrate temperatures from room temperature up to 225°C. The dependence of the structure and the epitaxial alignment of the thin C60-films on mica(001) on the substrate temperature and the film thickness up to 1.3 μm at a well-defined deposition rate (0.008 nm/s) is investigated by atomic force microscopy and X-ray diffraction. The shape and the size of the C60-islands, which have an influence on the film quality at larger film thicknesses, are sensitively dependent on the substrate temperature. At a film thickness of 200 nm the increase of the substrate temperature up to 225°C leads to smooth, completely coalesced epitaxial C60-thin films characterized by a roughness smaller than 1.5 nm, a mosaic spread Δω of 0.1° and an azimuthal alignment ΔΦ of 0.45°.


2013 ◽  
Vol 307 ◽  
pp. 333-336
Author(s):  
Shiuh Chuan Her ◽  
Tsung Chi Chi

Zinc oxide (ZnO) thin films were deposited on glass substrate by Radio frequency (RF) magnetron sputtering. The effect of substrate temperature on the microstructure of the ZnO films has been investigated. Crystal structure and surface morphology of the films were examined by X-ray diffraction (XRD) and atomic force microscopy (AFM). XRD patterns and AFM images show that the crystallinity and grain size are increasing with the increase of substrate temperature.


2015 ◽  
Vol 833 ◽  
pp. 127-133
Author(s):  
Jie Yu ◽  
Jie Xing ◽  
Xiu Hua Chen ◽  
Wen Hui Ma ◽  
Rui Li ◽  
...  

La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolyte thin films were fabricated on La0.7Sr0.3Cr0.5Mn0.5O2.75 (LSCM) porous anode substrates by Radio Frequency (RF) magnetron sputtering method. The compatibility between LSGM and LSCM was examined. Microstructures of LSGM thin films fabricated were observed by scanning electron microscope (SEM). The effect of substrate temperature on LSGM thin films was clarified by X-ray Diffraction (XRD). Deposition rate increases firstly at the range of 50°C~150°C, and then decreases at the range of 150°C ~300°C. After annealing, perovskite structure with the same growth orientation forms at different substrate temperature. Crystallite size decreases at first, to the minimum point at 150°C, then increases as substrate temperature rises.


2019 ◽  
Vol 1 (1) ◽  
pp. 42-45
Author(s):  
Tamiloli Devendhiran ◽  
Keerthika Kumarasamy ◽  
Mei–Ching Lin

Single crystals of 2-Aminothiazole 3,5-Dinitrobenzoic acid has been synthesized and good quality optical crystals were grown by slow evaporation technique at room temperature. The crystallinity nature of the grown crystal was confirmed from X-ray diffraction technique. An optical transmittance study was also carried out by UV – Vis spectra. FTIR spectra confirm the presence of functional groups in the grown crystal. The dielectric measurements were carried out in the range of 50Hz to 2MHz. The dielectric constant was seen to increase exponentially at lower frequencies. The microhardness studies were carried out using Vickers hardness indenter. Photoluminescence study shows that maximum emission occurs at 435nm.


2015 ◽  
Vol 754-755 ◽  
pp. 591-594
Author(s):  
Haslinda Abdul Hamid ◽  
M.N. Abdul Hadi

The codoped ZnO thin film were deposited by DC magnetron sputtering on silicon (111) followed by annealing treatment at 200 °C and 600 °C for 1 hour in nitrogen and oxygen gas mixture. Structural investigation was carried out by scanning electron microscopy (SEM), atomic force microscopy and x-ray diffraction (XRD). Film roughness and grain shape were found to be correlated with the annealing temperatures.


2012 ◽  
Vol 545 ◽  
pp. 290-293
Author(s):  
Maryam Amirhoseiny ◽  
Hassan Zainuriah ◽  
Ng Shashiong ◽  
Mohd Anas Ahmad

We have studied the effects of deposition conditions on the crystal structure of InN films deposited on Si substrate. InN thin films have been deposited on Si(100) substrates by reactive radio frequency (RF) magnetron sputtering method with pure In target at room temperature. The nitrogen gas pressure, applied RF power and the distance between target and substrate were 2×10-2 Torr, 60 W and 8 cm, respectively. The effects of the Ar–N2 sputtering gas mixture on the structural properties of the films were investigated by using scanning electron microscope, energy-dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction techniques.


1995 ◽  
Vol 73 (1-2) ◽  
pp. 35-37
Author(s):  
J. Murdoch ◽  
F. S. Razavi ◽  
J. A. Moore

Using magnetron sputtering techniques, several thin films of superconducting BiPbSrCaCuO were fabricated by varying the distance between the substrate (single crystal of MgO with polished (100) plane) and the targets. During the deposition the gas pressure was kept constant at 0.3 mbar (1 mbar = 0.1 kPa) and the substrate temperature was kept at 700 °C. An energy-dispersive X-ray fluorescence was designed using a radioisotope source with a secondary target and a Si(Li) X-ray spectrometer and it was used to measure the atomic composition of the film quantitatively. It was found that the Ca concentration relative to Sr increases linearly as the distance between the substrate and the targets increases. However, both Cu and Bi show a more complex variation of concentration with distance. The X-ray diffraction results also indicated that the films are grown epitaxially along the C axis, which showed a semiconducting behaviour with TC,zero below 60 K.


2008 ◽  
Vol 396-398 ◽  
pp. 369-372 ◽  
Author(s):  
Alexandre Mello ◽  
Elena Mavropoulos ◽  
Zhen Hong ◽  
J.B. Ketterson ◽  
Antonella M. Rossi

Hydroxyapatite (HAP) crystalline thin-coatings have been grown using a right angle RF magnetron sputtering approach at room temperature. The surface structural information of these biocompatible coatings at nanometer scales was obtained by glancing-incidence X-ray diffraction (GIXRD) with synchrotron radiation. The GIXRD spectra were obtained by fixed incidence theta angles at 0.5 and 1 degree. Structural profile analyses were performed over these nano-coating layers with reduced substrate interference. The coating thickness was calibrated by specular X-ray reflectivity (XRR) curves. Experiments have been performed on thin-coatings of HAP sputtered on silicon wafers and acid etched titanium discs at room temperature. GIXRD analysis has shown that all the principal peaks are attributed to a crystalline HAP. Previous tests of biocompatibility with osteoblasts cells have been encouraging studies on the surface of hydroxyapatite thin coatings prepared by opposing RF magnetron sputtering approach, as a promising candidate for bioimplant materials.


2021 ◽  
Vol 11 (21) ◽  
pp. 9896
Author(s):  
Veronica Sulyaeva ◽  
Maxim Khomyakov ◽  
Marina Kosinova

Boron carbide is one of the most important non-metallic materials. Amorphous BCx films were synthesized at room temperature by single- and dual-target magnetron sputtering processes. A B4C target and C target were operated using an RF signal and a DC signal, respectively. The effect of using single- and dual-target deposition and process parameters on the chemical bonding and composition of the films as well as their functional properties were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray energy dispersive analysis, X-ray diffraction, ellipsometry, and spectrophotometry. It was found that the film properties depend on the sputtering power and the used targets. EDX data show that the composition of the samples varied from B2C to practically BC2 in the case of using an additional C target. According to the XPS data, it corresponds to the different chemical states of the boron atom. A nanoindentation study showed that the film with a composition close to B2C deposited with the highest B4C target power reached a hardness of 25 GPa and Young’s modulus of 230 GPa. The optical properties of the films also depend on the composition, so the band gap (Eg) of the BCx film varied in the range of 2.1–2.8 eV, while the Eg of the carbon-rich films decreased to 1.1 eV.


Sign in / Sign up

Export Citation Format

Share Document