Optimization and Characteristics of Copper Pickling Wastewater Treatment in a Single Reactor Using Bio-Electrode Process

2012 ◽  
Vol 446-449 ◽  
pp. 2800-2808
Author(s):  
Guo Jing Yang ◽  
Shuang Shuang Chen ◽  
Wei Hong Wu ◽  
Jian Zhou

The process optimization and characteristics of electrode-biofilm for the treatment of copper pickling wastewater in the self-designed reactor were experimentally investigated. Carbon electrodes were installed in the reactor as the anode and cathode and denitrifying microorganisms were fixed on the surface of the cathode. The results showed that neutralization, copper ion removal, denitrification proceeded simultaneously and no secondary pollution existed. The removal rate of total nitrogen and copper ion in the effluent water reached 98% and 97% at 30mg/L of copper ion concentration and 100mg/L of nitrate nitrogen when the conditions were controlled at temperature 35°C, current density 0.1mA/cm2, hydraulic retention time 11h and C/N ration 1.07. The pH value of the treated water was increased almost to neutral. In addition, copper ion solution of certain concentration and purity could be made by exchanging the polarity of anode and cathode to recycle copper in this research.

2013 ◽  
Vol 295-298 ◽  
pp. 1231-1234 ◽  
Author(s):  
Yong Gui Yang ◽  
Yun Long Yang ◽  
Xiao Hong Kang

An experiment on the removal of heavy metal copper ions from industrial wastewater by magnetic flocculation was studied and the influences of PFS dosage static sedimentation time,temperature,pH value and magnetic powder dosage on treatment effect were discussed at the same time .The result of the test showed that when the dosage of PFS and magnetic powder were 100 and 400 mg/l respectively the pH value was 8.0,the static sedimentation time was 20min, the said process had a good effect on copper containing wastewater treatment. The removal rate of copper ions was over 97%,and the mass concentration of copper ions in the effluent water was below 0.5mg/l. Therefore after be treated by magnetic flocculation the quality of copper-containing wastewater could meet the requirement of GB 8978-1996 Integrated Wastewater Discharge Standard .


2012 ◽  
Vol 518-523 ◽  
pp. 3204-3207 ◽  
Author(s):  
Hui Tian ◽  
Ya Na Liu

The methyl violet dye as the main research subjects. The concentration of H2O2, ferrous ion concentration, pH value and the type of dyes and so on be research the influence on the rate. The result shown: the greater dose of H2O2, the greater removal of methyl violet dye. when the dose of H2O2reach to a certain amount, keep increase the dose , but the increase was not obvious. In a certain concentration range, when the higher concentration of ferrous ions, the higher degradation rate of methyl viologen.When more than the certain concentration, the degradation rate began to decline. The removal efficiency is better when the ratio of ferrous ions and H2O2is 1:10..A large removal rate is controlled in the temperature of 20 to 60 as well as the pH is from 3 to 5. After changing the type of dye,beside the Alizarin Red,the removal of Methylene blue, Rhodamine, methyl violet are all high.


2015 ◽  
Vol 1092-1093 ◽  
pp. 1068-1072
Author(s):  
Yi Feng Lei ◽  
Li Na Zheng ◽  
Xin Ran Jiang ◽  
Wei Nan Wu ◽  
Yi Ming Han

By zeolite column adsorption test process of nitrate pollution of groundwater, the research of three different inlet velocity of nitrate nitrogen removal, and the roles of nitrite nitrogen accumulation, zeolite adsorption of ammonia nitrogen and the influence of pH value changes, the results show that when the flow rate of 70 mL/h, the nitrate nitrogen concentration in the reaction column rising velocity under concentration less than before, but nitrate nitrogen concentration in the zeolite column has remained at about 3 mg/L, removal rate has remained at more than 95%; Nitrite nitrogen accumulation showed a trend of gradual decline, within the scope of flow rate of 90 mL/h, not affected by the late response, nitrite nitrogen concentration of 0.2 mg/L; As the reaction progresses, pH value gradually rose slightly, but still within the range of 6.0 to 8.0; Flow rate of 50 mL/h, zeolite adsorption of ammonia nitrogen effect is best.


Author(s):  
Yanji Li ◽  
Meng Ni ◽  
Qiang He ◽  
Xiang Li ◽  
Wei Zhang ◽  
...  

Graphene and chitosan acted as the adsorbents for simulated wastewater with rhodamine B. The novel material produced by freeze-drying obviously outperformed graphene and chitosan in treating rhodamine B. Factors (e.g., contaminant concentration, reaction time, solution pH value, adsorption dose and temperature) overall impacted the adsorption. The optimal conditions for graphene-chitosan treatment of dyes included the concentration of pollutants at 400 mg/L, the dose of adsorbent as 5 mg, the solution pH at 4 and at 25∘C, and for 12 h, in which the maximal treatment amount reached 858.00 mg/g. The adsorption processes of Chitosan/graphene composites and magnetic Chitosan/graphene composites for simulated wastewater from Rhodamine B reactor followed Langmuir and Freundlich models, respectively. The in-particle diffusion model shows that the adsorption process of the composites for Rhodamine B simulated wastewater is not determined by either surface diffusion or in-particle diffusion. The magnetic Chitosan/graphene composites exhibit high recyclability, which can be respectively reused 3 times and 5 times and retain 80% adsorption capacity after being administrated with Rhodamine B simulated wastewater. By analyzing grey correlation degree, it is demonstrated that the concentration of pollutants and the reaction temperature critically affect the adsorption capacity. The electrochemical treatment with graphite rod for the Cr3+ was under the initial voltage of 30.6 V, at the pH of 5.59, and at the temperature of 18.5∘C; the removal rate of the samples was nearly 62.35% with the chromium ion concentration declined from 0.3333 g/L to 0.1255 g/L.


2011 ◽  
Vol 396-398 ◽  
pp. 1918-1922 ◽  
Author(s):  
Li Ping Wan ◽  
Ying Feng Meng ◽  
Gao Li ◽  
Hua Zhou

Due to great variety additives and disposal difficulty, chemical method, biochemical method and solidification are adopted to treat fracturing wastewater in oil field. These processes easily bring about shortcomings, including high cost and secondary pollution. Studied on the treatment of fracturing wastewater of 4# well in Sichuan Oilfield by modified bentonite loading TiO2-Ag2O composite catalyst, COD removal rate is determined for different condition of pH value of solution, adding content of TiO2, inflating volume and light application time. The optimal condition is obtained as follows: pH value of solution is 3, adding content of TiO2 is 0.4-0.5%, inflating volume is 15L/min and light application time is 3h. Under this condition, COD removal rate of fracturing wastewater is 58.1%. The composite catalyst performance is stable and without secondary pollution. It is reusable by high temperature activation, so it can reduce wastewater treatment cost, and should be widely applied.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jogi Ganesh Dattatreya Tadimeti ◽  
Shilpi Jain ◽  
Sujay Chattopadhyay ◽  
Prashant Kumar Bhattacharya

Electrodialytic removal of calcium chloride (CaCl2, 25–50 mol·m−3) from 5% sugar solution was executed in batch recirculation mode. Calcium ion removal rate was monitored with (i) applied potential, (ii) feed flow rate, (iii) solution viscosity and conductivity, and (iv) catholyte streams (NaOH or sodium salt of ethylene diamine tetraacetic acid-acetic acid, Na2EDTA-AA). Unsteady state model for ion concentration change was written for the ED cell used. Linearized Nernst-Planck equation instead of Ohm’s law was applied to closely obtain the current density and concentration change theoretically. The model developed could closely predict the experimental observation. Mass transfer coefficients and specific energy densities were estimated for each combination of catholyte stream used. NaOH showed better performance for a short duration over Na2EDTA-acetic acid combination.


2014 ◽  
Vol 955-959 ◽  
pp. 2449-2452
Author(s):  
Liu Hui Ru ◽  
Zhong Cai Hua ◽  
Feng Rui Jun

In this paper, the chitosan was prepared for treatment of electroplating wastewater. The influence of temperature, PH value, the amount of chitosan and mixing time on the effects of the wastewater treatment was investigated. The result showed that at PH=3, with the addition of 0.6g chitosan and 2h of mixing, the optimum wastewater treatment effect can be obtained. The removal rate of COD is above 80% and the adsorption rate of copper ion is above 99%. The decolourization ratio and the turbidity indicated that the treatment is effective.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 207
Author(s):  
Gabriela Buema ◽  
Maria Harja ◽  
Nicoleta Lupu ◽  
Horia Chiriac ◽  
Loredana Forminte ◽  
...  

The initial characteristics of Romanian fly ash from the CET II Holboca power plant show the feasibility of its application for the production of a new material with applicability in environmental decontamination. The material obtained was characterized using standard techniques: scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), instrumental neutron activation analysis (INAA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), the Brunauer–Emmett–Teller (BET) surface area, and thermogravimetric differential thermal analysis (TG-DTA). The adsorption capacity of the obtained material was evaluated in batch systems with different values of the initial Cu(II) ion concentration, pH, adsorbent dose, and contact time in order to optimize the adsorption process. According to the experimental data presented in this study, the adsorbent synthesized has a high adsorption capacity for copper ions (qmax = 27.32–58.48 mg/g). The alkali treatment of fly ash with NaOH improved the adsorption capacity of the obtained material compared to that of the untreated fly ash. Based on the kinetics results, the adsorption of copper ions onto synthesized material indicated the chemisorption mechanism. Notably, fly ash can be considered an important beginning in obtaining new materials with applicability to wastewater treatment.


2014 ◽  
Vol 1073-1076 ◽  
pp. 889-893
Author(s):  
Zhi Jin Fan ◽  
Jin Chuan Gu ◽  
Yi Chen ◽  
Yong Xin Jin ◽  
Min Yin ◽  
...  

Utilize cement specific surface area is larger and neutralizes the acidic aqueous ,which can adsorb heavy metal,properties and can precipitate heavy metal.Study on removal rate of Cu2+,Pb2 +, Zn2 +, Cd2 +. By study the properties of the cement and analyzing the experimental data on the cement dosage,the ion concentration,PH and the stirring time, the results show that cement has better adsorption and the effect of precipitation on the above four kinds of ion, removal rate increased with increasing PH,the mount of dosage and stirring time.


Toxics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 4
Author(s):  
Roshni Patel ◽  
Michael Aschner

Alzheimer’s disease, a highly prevalent form of dementia, targets neuron function beginning from the hippocampal region and expanding outwards. Alzheimer’s disease is caused by elevated levels of heavy metals, such as lead, zinc, and copper. Copper is found in many areas of daily life, raising a concern as to how this metal and Alzheimer’s disease are related. Previous studies have not identified the common pathways between excess copper and Alzheimer’s disease etiology. Our review corroborates that both copper and Alzheimer’s disease target the hippocampus, cerebral cortex, cerebellum, and brainstem, affecting motor skills and critical thinking. Additionally, Aβ plaque formation was analyzed beginning from synthesis at the APP parent protein site until Aβ plaque formation was completed. Structural changes were also noted. Further analysis revealed a relationship between amyloid-beta plaques and copper ion concentration. As copper ion levels increased, it bound to the Aβ monomer, expediting the plaque formation process, and furthering neurodegeneration. These conclusions can be utilized in the medical community to further research on the etiology of Alzheimer’s disease and its relationships to copper and other metal-induced neurotoxicity.


Sign in / Sign up

Export Citation Format

Share Document