Clam Shell Compression Characteristics and Bond Strength

2012 ◽  
Vol 472-475 ◽  
pp. 2554-2557 ◽  
Author(s):  
Yun Hai Ma ◽  
Xing Wang Chai ◽  
Zhi Feng Yan ◽  
Dong Hui Chen ◽  
Jiang Man

In the study, based on existing shells, clam shells for the study to focus on its combination of strength and deformation characteristics were investigated. Analysis of the microstructure on the mechanical properties of clam shells, aragonite sheet comparison between the critical load Lc1 and the prismatic layer of aragonite layer between the critical load Lc2 changes, discussed the critical load overall mechanical properties of materials influence. The results showed that, vertical clam shell when the growth surface can carry the load the maximum stress is mainly concentrated in about 55MPa. Along the growth direction of the load, the maximum stress range between 48.5MPa-61MPa, as opposed to vertical loading and stability. Compressed prismatic layer and nacreous layer of the maximum intensity was significantly higher than the overall compressive strength, maximum strength of layered compression is about 2 times the overall compressive strength, direction perpendicular to the surface when the load curve showed the characteristics of ceramics. Clam shell aragonite between the critical load for the chip 90N, prismatic layer and nacreous layer between the critical load of 120N. In this process, the emergence of brittle fracture characteristics of ceramics, and when the nacre is broken, there was even a class of metal material slippage.

2021 ◽  
Vol 2 (2) ◽  
pp. 308-320
Author(s):  
Paul Chukwuka EZE ◽  
Eze CHIKAODILI ◽  
Ide PATRICK EJIKE

The effect of moisture content on the mechanical properties of agricultural material is essential during design and adjustment of machines used during harvest, cleaning, separation, handling and storage. This study determined some mechanical properties of Black and Brown colored of watermelon seed grown in Nigeria under different moisture contents range of 6.5 to 27.8% (d.b). The results for the mechanical properties obtained ranged from 15.68-29.54 N for compressive force; 1.95-3.40 mm for compressive extension; 0.13-0.33 N mm-2 for compressive strength; and 0.17-1.93 kJ for deformation energy at vertical loading position while at horizontal loading position, results obtained ranged from 14.71-38.36 N for compressive force; 1.94-4.20 mm for compressive extension; 0.16-0.32 N mm-2 for compressive strength; and 1.47-76.39 kJ for deformation energy for Black colored watermelon seed. The compressive force, compressive extension, compressive strength, deformation energy ranged from 14.18-36.49 N, 1.85-5.20 mm, 0.19 0.76 N mm-2, 26.23-189.75 kJ at vertical loading position and 16.47-41.82 N, 1.68-11.08 mm, 0.34- 0.57 N mm-2, 27.67-319.99 kJ at horizontal loading position for Brown colored watermelon seed. The correlation between the mechanical properties and moisture content was statistically significant at (p≤0.05) level. It is also economical to load Black colored in vertical loading position at 27.8% moisture content and Brown colored in vertical loading position at 27.8% moisture content to reduce energy demand when necessary to crack or compress the seed. This research has generated data that are efficiently enough to design and fabricate processing and storage structures for Black and Brown water melon seeds.


2019 ◽  
Author(s):  
Pezhman Mohammadi ◽  
Wolfgang Wagermaier ◽  
Merja Penttila ◽  
Markus B. Linder

AbstractStudying various marine biomineralized ultrastructures reveals the appearance of common architectural designs and building blocks in materials with fascinating mechanical properties that match perfectly to their biological tasks. Advanced mechanical properties of biological materials are attributed to evolutionary optimized molecular architectures and structural hierarchy. One example which has not yet been structurally investigated in great detail is the shell of Mytilus edulis L. (Finnish blue mussel) found in the archipelago of SW-Finland. Through a combination of various state-of-the-art techniques such as high-resolution electron microscopy imaging, Fourier-transformed infrared spectroscopy, powder X-ray diffraction, synchrotron wide-angle X-ray diffraction, nanoindentation and protein analysis, both the inorganic mineralized components as well as the organic-rich matrix were extensively characterized. We found very similar ultra-architecture across the shell of M. edulis L. as compared to the widely studied and closely related M. edulis. However, we also found interesting differences, for instance in the thickness and degree of orientation of the mineralized layers indicating dissimilar properties and related alterations in the biomineralization processes. Our results show that the shell of M. edulis L. has a gradient of mechanical properties, with the increase in the stiffness and the hardness from anterior to the posterior region of the shell. The shell is made from distinct and recognizable mineralized layers each varying in thickness and microstructural features. At posterior regions of the shell, moving from dorsal to ventral side, these layers are an oblique prismatic layer, a prismatic layer and a nacreous layer, in which the oblique prismatic layer is found to be the main and thickest mineralized layer of the shell. Probing the calcified rods in the oblique prismatic layer using high resolution SEM imaging revealed opening of channels with a diameters of 40-50 nm and lengths up to a micrometer extending through the rods. The chitin and protein have been found to be the main component of the organic-rich interfacial matrix as expected. Protein analysis showed two abundant proteins with sizes around 100 kD and 45 kD which likely not only regulates biomineralization and adhesion of the crystals but also governing the intrinsic-extrinsic toughening in the shell. Overall, this detailed analysis provides new structural insights into biomineralization of marine shells in general.


2014 ◽  
Vol 1030-1032 ◽  
pp. 1046-1051
Author(s):  
Xiao Hui Zeng ◽  
Hua Yan ◽  
Hua Feng Hu ◽  
Hong You Sun ◽  
Yue Li

Mechanical properties of CA mortar with different air content were studied, and the size of the air bubbles was also analyzed. Results showed that the ductibility of CA mortar could be largely prolonged by the air bubbles. As the air content of CA mortar increased from 4.2% to 9.1%, the strain of the maximum stress increased from 1% to 2%. The compressive strength and elastic modulus of CA mortar decreased as the air content increased. And when the air content of CA mortar was higher than 15%, the compressive strength of it decreased rapidly. The SEM analysis showed the air bubbles of diameter larger than 0.5mm was the primary reason of decrease of the compressive strength.


Author(s):  
Mehmet Sarikaya ◽  
Katie L. Gunnison ◽  
Ilhan A. Aksay

Interests in ceramic/polymer composites are increasing mainly because of their superior physical properties for structural and electronic applications. Naturally produced composites, such as seashells, are ideal to study the formation, microstructure, and physical properties of these composites as these materials have far superior properties with well-defined microstructures than man-made ones which require complex fabrication techniques. In this paper, a summary of a recent study on the microstructure of abalone shell (Haliotis refuscens) will be described in conjunction with its mechanical properties.A longitudinal cross-section of abalone shell displays two types of microstructures: outer prismatic layer and inner nacreous layer. Two forms of CaCO3, calcite (rhombohedral, ) and aragonite (orthorhombic, Pmcn) constitute the inorganic component of the organic/ceramic composite in the prismatic and nacreous layers, respectively. The structure and properties of the nacreous will be described here as this is the part which provides a good combination of mechanical properties for the seashell.


Author(s):  
Pezhman Mohammadi ◽  
Wolfgang Wagermaier ◽  
Merja Penttilä ◽  
Markus B. Linder

Studying various marine biomineralized ultrastructures reveals the appearance of common architectural designs and building blocks in materials with fascinating mechanical properties that match perfectly to their biological tasks. Advanced mechanical properties of biological materials are attributed to evolutionary optimized molecular architectures and structural hierarchy. One example which has not yet been structurally investigated in great detail is the shell of Mytilus edulis L. (Finnish blue mussel) found in the archipelago of SW-Finland. Through a combination of various state-of-the-art techniques such as high-resolution electron microscopy imaging, Fourier-transformed infrared spectroscopy, powder X-ray diffraction, synchrotron wide-angle X-ray diffraction, nanoindentation and protein analysis, both the inorganic mineralized components as well as the organic-rich matrix were extensively characterized. We found very similar ultra-architecture across the shell of M. edulis L. as compared to the widely studied and closely related M. edulis. However, we also found interesting differences, for instance in the thickness and degree of orientation of the mineralized layers indicating dissimilar properties and related alterations in the biomineralization processes. Our results show that the shell of M. edulis L. has a gradient of mechanical properties, with the increase in the stiffness and the hardness from anterior to the posterior region of the shell. The shell is made from distinct and recognizable mineralized layers each varying in thickness and microstructural features. At posterior regions of the shell, moving from dorsal to ventral side, these layers are an oblique prismatic layer, a prismatic layer and a nacreous layer, in which the oblique prismatic layer is found to be the main and thickest mineralized layer of the shell. Probing the calcified rods in the oblique prismatic layer using high resolution SEM imaging revealed opening of channels with a diameters of 40-50 nm and lengths up to a micrometer extending through the rods. The chitin and protein have been found to be the main component of the organic-rich interfacial matrix as expected. Protein analysis showed two abundant proteins with sizes around 100 kD and 45 kD which likely not only regulates biomineralization and adhesion of the crystals but also governing the intrinsic-extrinsic toughening in the shell. Overall, this detailed analysis provides new structural insights into biomineralization of marine shells in general.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2694 ◽  
Author(s):  
Shansuo Zheng ◽  
Lihua Niu ◽  
Pei Pei ◽  
Jinqi Dong

In order to evaluate the deterioration regularity for the mechanical properties of brick masonry due to acid rain corrosion, a series of mechanical property tests for mortars, bricks, shear prisms, and compressive prisms after acid rain corrosion were conducted. The apparent morphology and the compressive strength of the masonry materials (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), the shear behavior of the masonry, and the compression behavior of the masonry were analyzed. The resistance of acid rain corrosion for the cement-lime mortar prisms was the worst, and the incorporation of fly ash into the cement mortar did not improve the acid rain corrosion resistance. The effect of the acid rain corrosion damage on the mechanical properties for the brick was significant. With an increasing number of acid rain corrosion cycles, the compressive strength of the mortar prisms, and the shear and compressive strengths of the brick masonry first increased and then decreased. The peak stress first increased and then decreased whereas the peak strain gradually increased. The slope of the stress-strain curve for the compression prisms gradually decreased. Furthermore, a mathematical degradation model for the compressive strength of the masonry material (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), as well as the shear strength attenuation model and the compressive strength attenuation model of brick masonry after acid rain corrosion were proposed.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2303
Author(s):  
Congyu Zhong ◽  
Liwen Cao ◽  
Jishi Geng ◽  
Zhihao Jiang ◽  
Shuai Zhang

Because of its weak cementation and abundant pores and cracks, it is difficult to obtain suitable samples of tectonic coal to test its mechanical properties. Therefore, the research and development of coalbed methane drilling and mining technology are restricted. In this study, tectonic coal samples are remodeled with different particle sizes to test the mechanical parameters and loading resistivity. The research results show that the particle size and gradation of tectonic coal significantly impact its uniaxial compressive strength and elastic modulus and affect changes in resistivity. As the converted particle size increases, the uniaxial compressive strength and elastic modulus decrease first and then tend to remain unchanged. The strength of the single-particle gradation coal sample decreases from 0.867 to 0.433 MPa and the elastic modulus decreases from 59.28 to 41.63 MPa with increasing particle size. The change in resistivity of the coal sample increases with increasing particle size, and the degree of resistivity variation decreases during the coal sample failure stage. In composite-particle gradation, the proportion of fine particles in the tectonic coal sample increases from 33% to 80%. Its strength and elastic modulus increase from 0.996 to 1.31 MPa and 83.96 to 125.4 MPa, respectively, and the resistivity change degree decreases. The proportion of medium particles or coarse particles increases, and the sample strength, elastic modulus, and resistivity changes all decrease.


Sign in / Sign up

Export Citation Format

Share Document