Effects of Fiber Surface Treatment on Mechanical and Thermal Properties of Coir-MCC/Polylactic Acid Composites

2012 ◽  
Vol 488-489 ◽  
pp. 638-642 ◽  
Author(s):  
Tanawat Tayommai ◽  
Duangdao Aht-Ong

Biodegradable plastic reinforced natural fiber composites are finding applications in many fields ranging from construction industry to food industry. The use of natural bio based fillers as reinforcements in composites has several advantages over inorganic fillers including lower density, renewability, and biodegradability. In this research, polylactic acid (PLA)/ microcrystalline cellulose (MCC) composites were investigated as a means to reduce the material cost and enhance the material properties. The coir fibers were used to prepare microcrystalline. Subsequently, the prepared MCC was treated with 3-amiopropyl triethoxysilane (APS) to improve interfacial adhesion between fiber and polymer matrix. Treated and untreated MCC were then mixed at 0-10 wt.% with PLA by twin-screw extruder and fabricated into test specimens by compression molding. The effects of MCC loading and surface treatment on morphology, mechanical properties, and thermal properties of PLA/MCC composites were investigated. The results showed that the PLA with 5 wt.% of MCC exhibited the best mechanical properties compared with all prepared composites. Thermal stability of PLA composites were decreased with increasing MCC content but it can be improved by treated the MCC with APS.

2014 ◽  
Vol 875-877 ◽  
pp. 171-176
Author(s):  
Senawi Rosman ◽  
Mohd Alauddin Sakinah ◽  
Mohd Salleh Ruzitah ◽  
Mohammad Shueb. Iqbal

Renewable resourced green biocomposites are currently receiving much attention due to their environmental advantages. Therefore, the aim of this research is study the effect of fiber surface treatment on the mechanical properties of polylactic acid (PLA) biocomposite in order to produce a green biocomposite. Experiments were conducted by surface treatment of empty fruit bunch fiber using two methods, sodium hydroxide and silane. Both treated and untreated fibers were then melt compounded with PLA and mechanical properties of the biocomposite was studied. The results showed that silane treatment improved the reinforced biocomposite mechanical properties such as tensile strength by 33% and flexural modulus by 44% compared with untreated fiber reinforced biocomposites. This is due to the silane functional groups that act as a bridge between the PLA and fiber.


2020 ◽  
pp. 002199832097519
Author(s):  
Fatma Naiiri ◽  
Allègue Lamis ◽  
Salem Mehdi ◽  
Zitoune Redouane ◽  
Zidi Mondher

Natural fibers are increasingly used in composites because of their low cost and good mechanical properties. Cement reinforced with natural fibersis contemplates as a new generation of construction materials with superior mechanical and thermal performance. This study of three sizes’effect of Doum palm fiber explores the mortar’s behavior reinforced with different fiber ratio. The aim is to determine the optimal addition to improve mechanical and thermal properties of natural fiber reinforced cements. Physical, mechanical and thermal properties of composite are examined. Tensile properties of Doum fibers are verified to determine their potential as reinforced material. Findings prove that the use of alkali-treated Doum fiber as reinforcement in cement mortar composite leads to the upgrading of the mechanical properties including thermo-physical properties against composites reinforced with raw fibers and control cement mortars. While, the compression and flexural strength of the cement mortar reinforced with alkali-treated Doum fiber with diameter 0.3 mm (CT3) are metered to be 11.11 MPa, 5.22 MPa, respectively for fiber content 0.5%. Additionally, based on thermo-physical tests, it is assessed that the thermal conductivity and diffusivity decrease for cement mortar reinforced with Doum fiber with diameter 0.2 mm (CT2).


2017 ◽  
Vol 737 ◽  
pp. 281-286 ◽  
Author(s):  
Pornsri Sapsrithong ◽  
Kesinee Puksattee ◽  
Kingkaew Saewjaidee ◽  
Navapon Pensuk ◽  
Apaipan Rattanapan

Morphology, mechanical properties and rheological behavior of wood plastic composite, derived from acrylate-styrene-acrylonitrile (ASA) and bagasse which was treated with potassium permanganate (KMnO4) and using styrene butadiene rubber (SBR) as impact modifier, were reported. The effect of fiber surface treatment with KMnO4 and different amount of SBR on properties of wood plastic composite, prepared from ASA and 50 phr of bagasse, were investigated. Wood plastic composites (both treated and untreated) with varying amount of SBR, as impact modifier from 0-15 wt% of ASA, were prepared by melt-blending technique. The specimens were shaped with a compression molding machine and characterized, including morphology, impact strength, flexural properties and rheological behavior. It was demonstrated that the fiber surface treatment, using KMnO4, could effectively impove interfacial adhesion between bagasse and ASA matrix. These led to an improvement of morphology and mechanical properties such as impact strength, flexural strength and modulus. SEM micrographs revealed that the interfacial modification enhanced the interfacial adhesion between bagasse (fiber) and ASA (matrix) causing an increasing of shear stress and shear viscosity. Additionally, the effect of amount of SBR, as impact modifier, was also reported. The resulted showed that the impact strength was improved with increasing the amount of SBR (up 5 wt% of ASA) whereas, flexural strength and modulus were found to decrease with increasing SBR content.


2020 ◽  
pp. 095400832094392
Author(s):  
Xiangmin Xu ◽  
Beibei Tong ◽  
Xiaoyan Zhang ◽  
Yudong Zhang ◽  
Binjie Li

Constructing a hierarchical structure of nanomaterials on the surface of reinforcing fibers is the best strategy to obtain other desired functions while improving the mechanical properties of polymers. In this article, acid-treated multiwall carbon nanotubes (MWCNTs) were introduced to the surface of milled glass fiber (MGF) under the combined action of tetraethyl orthosilicate and 3-aminopropyltriethyloxysilane to prepare a hierarchical fiber (MWCNTs-GF). The surface morphology and microstructure of this hierarchical fiber were characterized by field-emission scanning electron microscope and transmission electron microscope, and a composite coating with MWCNTs as the main component was observed on each fiber surface. Fourier transform infrared and Raman spectroscopy revealed the presence of the specific interactions between MWCNTs and MGF. Polyamide 66 (PA66) composites with different content of MWCNTs-GF were fabricated by melt blending. The resulting composites exhibited improved mechanical properties relative to pure PA66, in which the tensile strength and notched impact strength of the composite filled with 3 wt% MWCNTs-GF increased by 23.3% and 69.0%, respectively. Subsequently, by analyzing fracture morphology and interfacial adhesion of the composites, the strengthening and toughening mechanisms of MWCNTs-GF were elaborated in detail. In addition, the results of thermogravimetric analysis and differential scanning calorimetry showed that MWCNTs-GF possessed strong heterogeneous nucleation ability, and its addition could refine the grain size of PA66 and significantly increase the crystallization temperature and thermal stability of the corresponding composites. Compared to PA66 composites reinforced with neat MGF, it was found that the unique surface structure of MWCNTs-GF was likely responsible for improved thermal properties of this hierarchical fiber-reinforced PA66 composites.


2021 ◽  
Vol 899 ◽  
pp. 540-547
Author(s):  
Aues A. Beev ◽  
Dzhul’etta A. Beeva ◽  
M.U. Shokumova ◽  
M.R. Tlenkopachev ◽  
Muaed M. Oshkhunov

The paper investigates the processes of carbon fiber surface treatment and their influence on the properties of polyetheretherketone composites. It has been shown that preliminary thermal activation of carbon fiber followed by treatment with a dressing agent - polyhydroxyether makes it possible to create polyetheretherketone composite carbon-filled materials with an increased level of physical and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document