Study on High Frequency Hydraulic Exciter Based on Rotary Valve Control

2012 ◽  
Vol 490-495 ◽  
pp. 1441-1445 ◽  
Author(s):  
Jian Zhuo Zhang ◽  
Li Zhe Guan ◽  
Kang Kang Li

A kind of hydraulic exciter based on rotary valve control was studied in this paper, the composition of the exciter and its working principle were introduced, and the mathematical model of the system was established. The characters of the system were simulated using MATLAB. From the results of the simulation, we get the relationship of the amplitude of Vibration oil cylinder between the system’s pressure and the exciting frequency. The results can provide theoretical bases to design the hydraulic exciter.

2013 ◽  
Vol 846-847 ◽  
pp. 228-232
Author(s):  
Hua Qing Wang ◽  
Jian Cheng Yang ◽  
Kai Yang ◽  
Jian Feng Qin ◽  
Ze Xu Zhou ◽  
...  

In this paper the working principle of cotton foreign fibers detecting and clearing on line device paving and loosing part is described, and the mathematical model of the relationship between line speed is established, and paving part control system that is suitable for this device has been designed on this basis.


2011 ◽  
Vol 128-129 ◽  
pp. 1010-1014
Author(s):  
Rui Wu ◽  
Dan Wen Zhang ◽  
Juan Sun

The twiste angle has a great effect on shaping law and stability of Numerical Controlled Electrochemical Machining (NC-ECM) process. In order to avoid the disadvantages caused by twiste angle, a methode of study shaping law by dispersing cathode working face in NC-ECM was proposed, and a mathematical model of the shaping law with the effects of twiste angle has been established in this paper. The mathematical model disclosed the relationship of twiste angle β, feeding velocity vf and thickness of removal material h in NC-ECM. Theoretical and experimental results show the the mathematical model of shaping law described in this paper can be considered as a useful reference and is helpful for the analysis of the NC-ECM and general ECM process.


2011 ◽  
Vol 483 ◽  
pp. 78-82
Author(s):  
Xiao Wei Liu ◽  
Jia Lu Tang ◽  
Rong Yan Chuai ◽  
Hai Feng Zhang ◽  
Xi Lian Wang

In this paper, we make a detail analysis of some factors, which affects the electrostatic bonding process. According to the electrical properties of glass, combined with the principle of electrostatic bonding, we analysed the relationship of critical bonding time, voltage and temperature as well as the factors which affect electrostatic bonding. Then we come up with the mathematical model of the intensity and temperature of electrostatic bonding. In accordance with the above-mentioned formula and the experimental data, we can get the following conclusions: the intensity of electrostatic bonding is much greater between 280°C to 370°C; the best temperature for this bonding is about 350°C; however, when the temperature is below 280°C,the intensity of electrostatic bonding is lower due to the great impact of particles under low temperature; but when the temperature is higher than 370°C,the mismatch of coefficient of thermal expansion of silicon and glass gets larger, then as a result, the intensity of this bonding has a significant decrease with the increasing of temperature.


10.12737/4517 ◽  
2014 ◽  
Vol 4 (2) ◽  
pp. 128-135 ◽  
Author(s):  
Агапов ◽  
Aleksandr Agapov

There is a task of cutting optimization of sawlogs considering the width of cut. Output of sawn timber produced after the first pass of cutting sawlogs is chosen as optimality criterion. The objective function is represented as the sum of the cross-section of bars and planks. Such a mathematical model of the objective function establishes a relationship between size of bars and planks. Constraint equations represent the relationship of sawlogs diameter with the size of bars and boards, as well as the width of the cut. To solve the mathematical model the method of Lagrange multipliers is used.


2012 ◽  
Vol 201-202 ◽  
pp. 360-363
Author(s):  
Tong Xing ◽  
Liang Fu

In order to solve the problem that traditional flutters can’t reach the requirements of vibration-assisted machining (VAM), a miniature modularized electro-hydraulic high-frequency flutter was proposed, which can output large force in high frequency. The structure and working principle of the flutter were elaborated in this paper. The equations of the valve in this flutter can be obtained based on equations of tradition valves, which established the mathematical model of the flutter. The flutter output waveforms were analysed by MATLAB in different input frequencies. The simulation results show that the flutter amplitude reach the maximum value in resonant frequency.


2014 ◽  
Vol 971-973 ◽  
pp. 827-832
Author(s):  
Yan Jin Qin ◽  
Zhang Yong Wu ◽  
Zi Yong Mo ◽  
Xian Wang ◽  
Juan Wang

To establish the mathematical model of the system of high speed switch valve control the cartridge valve based on analyzing the working principle of the system,and then to analyze the impact of selecting different input signal of high speed solenoid valve and different duty cycle of PWM pulse width modulated signal through simulation software AMSEsim. The results obtained in the high-frequency performance is not very satisfactory, but in the low signal and moderate duty cycle, high-speed switch valve can be good linear control of the cartridge valve.


1991 ◽  
Vol 24 (5) ◽  
pp. 85-96 ◽  
Author(s):  
Qingliang Zhao ◽  
Zijie Zhang

By means of simulated tests of a laboratory–scale oxidation pond model, the relationship between BOD5 and temperature fluctuation was researched. Mathematical modelling for the pond's performance and K1determination were systematically described. The calculation of T–K1–CeCe/Ci) was complex but the problem was solved by utilizing computer technique in the paper, and the mathematical model which could best simulate experiment data was developed. On the basis of experiment results,the concept of plug–ratio–coefficient is also presented. Finally the optimum model recommended here was verified with the field–scale pond data.


2012 ◽  
Vol 155-156 ◽  
pp. 726-730
Author(s):  
Zhong Hua Li ◽  
Qian Tang ◽  
Di Yan ◽  
Jie Wu

The common methods of cam induction hardening are discussed at present. By analyzing the basic motion law of conjugate cam, a new induction hardening mechanism is designed. The motion controlling mathematical model is built on the basis of the kinematic relationship of the transmission of the induction hardening mechanism. Through the mathematical model calculation, we can get angular velocity of the workbench, then realize that single axis on NC machine controls the inductor to make isometric uniform motion relative to the cam surface, so that the cam hardening depth distribution is uniform.


2020 ◽  
Vol 9 (9) ◽  
pp. e891998013
Author(s):  
Mônica Calixto Ribeiro de Holanda ◽  
Marco Aurélio Carneiro de Holanda ◽  
Leandro Ricardo Rodrigues de Lucena

Objective was to define a mathematical model that better explain the relationship of the animals weight depending not only on the animals age but also on the animals morphometric measurements. 40 piglets, half Duroc-Large White blood, were used, 20 males and 20 females, from 3 to 35 days of age (lactation phase) initially weighing 1.518 ± 0.121 kg and from 36 to 66 days of age (calving phase) with a body weight of 7.010 ± 0.704 kg. The animals were weighed weekly on a digital balance. The relationship of animal weight, age and morphometric measurements of male and female piglets were performed using regression models: existing, linear and power. The models were evaluated according to nine criterialinear model was the most adequate to explain the weight of male pigs, while for female pigs was the power. The age of the pig, the shank and palette length, as well as the circumference of the shank jointly explain the weight of the male piglets. The weight of females is explained jointly by age, body length, thorax and hip circumference.


Sign in / Sign up

Export Citation Format

Share Document