Study on Surface Roughness in Ultrasonic Vibration Mill-Grinding Hot-Pressed Silicon Nitride

2012 ◽  
Vol 500 ◽  
pp. 269-274 ◽  
Author(s):  
Guo Chao Qiao ◽  
Ming Zhou ◽  
Ming Wang

In order to investigate the influences of machining parameters on surface roughness in ultrasonic vibration mill-grinding, the motion of abrasive grain is analyzed. The analysis indicates that grain and workpiece separate periodically which are beneficial for coolant entering into grinding zone to reduce grinding temperature and grinding force and improve surface quality. Experiments are carried out and detected by SEM and roughmeter, the results indicate that influences of spindle rate, feeding speed, cutting depth and amplitude decrease in turn. Through regression analysis, an empirical formula is obtained. The experiments indicate that material removal mode dominates surface roughness.

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 529
Author(s):  
Yezhuang Pu ◽  
Yugang Zhao ◽  
Jianbing Meng ◽  
Guoyong Zhao ◽  
Haiyun Zhang ◽  
...  

Despite extensive research over the past three decades proving that laser-assisted machining (LAM) is effective for machining ceramic materials, which are affected by many machining parameters, there has been no systematic study of the effects of process parameters on surface quality in LAM ceramic materials. In this paper, the effects and optimization of laser power, spindle speed, feed rate, and cutting depth on surface roughness and work hardening of LAM Si3N4 were systematically studied, using grey relational analysis coupled with the Taguchi method. The results show that the combination of machining parameters determines the material removal mode at the material removal location, and then affects the surface quality. In ductile material removal mode, both the value of surface roughness and work hardening degree are smaller. Decreased surface roughness and work hardening degree can be obtained with smaller cutting depth and higher laser power.


Author(s):  
Feng Jiao ◽  
Ming-jun Zhang ◽  
Ying Niu

Laser heating assisted cutting is a lucrative technique for machining difficult-to-machine materials such as tungsten carbide (YG20), which uses a high power laser to focally heat a workpiece before the material removal with traditional or innovative cutting tool. In the latter case, the application of ultrasonic vibration to the cutting edge was found to replace the continuous cutting mode to the interrupted one, it reduces the adhesion and entanglement of chips, improves the tool wear and surface roughness of the workpiece. The combination of laser heating assisted cutting and two-dimensional ultrasonic vibration cutting methods has been successfully applied by the authors of this paper for cutting of tungsten carbide (YG20). In this follow-up study, the proposed composite method is experimentally and theoretically verified. Through the mathematical model and simulation analysis, its advantages, including small cutting force, softening the effect and improved machining properties of the processed material (YG20) are corroborated. The dependencies between the laser power, cutting speed, depth of cut, and feed rate on the surface roughness are established via the response surface methodology. The genetic algorithm is applied to the optimization of machining parameters by setting the material removal rate as the object variable and surface roughness as a constraint variable. The results obtained strongly suggest that the optimized parameters improve the processing efficiency and furnish the required processing quality.


2021 ◽  
Author(s):  
He Sui ◽  
Lifeng Zhang ◽  
Shuang Wang ◽  
Zhaojun Gu

Abstract Axial ultrasonic vibration-assisted cutting (AUVC) has proved to have better machining performance compared with conventional cutting methods; however, the effect of numerous and complex influencing factors on machining performance has not been clearly revealed and a recommended combination of cutting conditions has not been proposed yet, especially for difficult-to-machine material such as Ti6Al4V alloy. This paper focuses on experimental and theoretical investigation into machining performance when cutting Ti6Al4V with the AUVC method. First, a retrospective of the separation characteristics of AUVC is provided and the variable parameter cutting characteristics are demonstrated. We classify the influencing factors on machining performance into four categories: machining parameters, vibration parameters, tool choice, and cooling conditions. The relationship between these factors in terms of their effect on machining performance is established theoretically. Then, it describes experiments to determine the influence of these factors on cutting force, tool life, and surface roughness. For absolute influence, the orders for cutting force, tool life, and surface roughness are respectively cutting depth > amplitude > feed rate > rotation speed, rotation speed > feed rate > amplitude > cutting depth, and feed rate > amplitude > cutting depth > rotation speed. However, for relative influence, the order is unified as: amplitude > feed rate > rotation speed > cutting depth. Finally, it suggests a smaller feed rate, larger amplitude, moderate rotation speed, and smaller cutting depth in addition to a WC tool coated with TiAlN and used under HPC cooling condition for optimal performance of AUVC. This recommendation is based on the theoretical analysis and experimental results of cutting force, surface roughness, and tool life.


Author(s):  
C Balasubramaniyan ◽  
K Rajkumar ◽  
S Santosh

NiTiCuZr shape memory alloys (SMA) outperform ternary and binary SMA alloys in terms of functional fatigue and higher temperature performance due to their high cyclic stability and transformation temperatures. Owing to the impairment of the shape memory effect during processing, it is difficult to select a manufacturing process for obtaining design functionality with the required dimensions and surface roughness. In this work, a high-temperature NiTiCuZr SMA was machined using an ultrasonic vibration assisted wire electric discharge machine (USV-WEDM). The machining was conducted using various parameters with a constant ultrasonic vibration of 20 kHz provided on a wire-electrode to evaluate surface roughness (Ra) and material removal rate (MRR). Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray analysis (EDX) were utilized to examine the surface integrity and chemical composition of the machined surfaces. MRR increased by 62% with a steady increase in pulse-on time ( Ton) and applied current ( I), whereas increasing levels of parameters such as pulse-off time ( Toff) and servo voltage (SV) reduced surface roughness ( Ra) by 69%. The results reveal that tool vibration at ultrasonic frequency reduces the surface roughness and improves the material removal rate of the machined NiTiCuZr SMA as compared to that of non-ultrasonic assisted machining conditions. SEM-EDX investigation reveals that the formation of re-solidification and oxide layers during NiTiCuZr machining at high machining parameters results in increased hardness and surface roughness. USV-WEDM is a suitable process for machining SMA alloy without adversely impacting SMA properties.


2018 ◽  
Vol 932 ◽  
pp. 30-35
Author(s):  
Yan Yan Yan ◽  
Yi Fan Lv ◽  
Jun Li Liu

According to the removal mechanism of ductile regime machining of nanoZrO2 ceramics and the dynamic characteristics of ultrasonic vibration assisted diamond flying cutting (UVADFC), the model of the material removal rate (MRR) of nanoZrO2 ceramics under UVADFC and diamond flying cutting (DFC) have been proposed by infinitesimal method,. In this paper, the experiment of three factors and four levels was carried out to study the relationships between MRR and the machining parameters (cutting depth , spindle speed n and feed rate c). The results of the experiment shows that UVADFC is a cost-effective method which is applied to the machining of nanoZrO2 ceramics, and the MRR of nanoZrO2 ceramics under UVADFC is 1.3-2 times greater than that of DFC, and the degree of the factors significantly influence on the MRR of nanoZrO2 ceramics are feed rate, cutting depth, spindle speed in a sequence whether it is DFC or UVADFC. The results will shed more light on the material removal mechanism of UVADFC.


2012 ◽  
Vol 591-593 ◽  
pp. 405-408
Author(s):  
Guo Chao Qiao ◽  
Ming Zhou

An experimental investigation is reported of the temperature measurement for ultrasonic vibration mill-grinding of silicon nitride with infrared thermovision. The effects of machining parameters such as spindle speed, feed speed, cutting depth on the surface temperature of workpiece were investigated and the reasons for the trend of temperature changes were analyzed. From the analyses, it indicates that infrared imager technology is suitable for temperature measurement in ultrasonic vibration mill-grinding of ceramics and tool wear has an important effect on the measurement results.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 460
Author(s):  
Canbin Zhang ◽  
Chifai Cheung ◽  
Benjamin Bulla ◽  
Chenyang Zhao

Ultrasonic vibration-assisted cutting (UVAC) has been regarded as a promising technology to machine difficult-to-machine materials such as tungsten carbide, optical glass, and hardened steel in order to achieve superfinished surfaces. To increase vibration stability to achieve optical surface quality of a workpiece, a high-frequency ultrasonic vibration-assisted cutting system with a vibration frequency of about 104 kHz is used to machine spherical optical steel moulds. A series of experiments are conducted to investigate the effect of machining parameters on the surface roughness of the workpiece including nominal cutting speed, feed rate, tool nose radius, vibration amplitude, and cutting geometry. This research takes into account the effects of the constantly changing contact point on the tool edge with the workpiece induced by the cutting geometry when machining a spherical steel mould. The surface morphology and surface roughness at different regions on the machined mould, with slope degrees (SDs) of 0°, 5°, 10°, and 15°, were measured and analysed. The experimental results show that the arithmetic roughness Sa of the workpiece increases gradually with increasing slope degree. By using optimised cutting parameters, a constant surface roughness Sa of 3 nm to 4 nm at different slope degrees was achieved by the applied high-frequency UVAC technique. This study provides guidance for ultra-precision machining of steel moulds with great variation in slope degree in the pursuit of optical quality on the whole surface.


2011 ◽  
Vol 175 ◽  
pp. 289-293 ◽  
Author(s):  
Hao Liu ◽  
Chong Hu Wu ◽  
Rong De Chen

Side milling Ti6Al4V titanium alloys with fine grain carbide cutters is carried out. The influences of milling parameters on surface roughness are investigated and also discussed with average cutting thickness, material removal rate and vibration. The results reveal that the surface roughness increases with the increase of average cutting thickness and is primarily governed by the radial cutting depth.


2020 ◽  
Vol 10 (2) ◽  
pp. 516 ◽  
Author(s):  
Pei Yi Zhao ◽  
Ming Zhou ◽  
Xian Li Liu ◽  
Bin Jiang

Because of the changes in cutting conditions and ultrasonic vibration status, the proportion of multiple material removal modes are of uncertainty and complexity in ultrasonic vibration-assisted grinding of optical glass. Knowledge of the effect of machined surface composition is the basis for better understanding the influence mechanisms of surface roughness, and also is the key to control the surface composition and surface quality. In the present work, 32 sets of experiments of ultrasonic vibration-assisted grinding of BK7 optical glass were carried out, the machined surface morphologies were observed, and the influence law of machining parameters on the proportion of different material removal was investigated. Based on the above research, the effect of surface composition was briefly summarized. The results indicated that the increasing of spindle rotation speed, the decreasing of feed rate and grinding depth can improve the proportion of ductile removal. The introduction of ultrasonic vibration can highly restrain the powdering removal, and increase the proportion of ductile removal. Grinding depth has a dominant positive effect on the surface roughness, whereas the spindle rotation speed and ultrasonic amplitude both have negative effect, which was caused by the reduction of brittle fracture removal.


Sign in / Sign up

Export Citation Format

Share Document