Numerical Simulation and Research of Far Infrared Sterilization Tunnel

2012 ◽  
Vol 503-504 ◽  
pp. 798-801
Author(s):  
Suo Huai Zhang ◽  
Ming Wei Wan

To establish a CFD model of far infrared tunnel, get numerical simulation dates of far infrared tunnel by using Fluent soft, compared with experimental dates. The results show that the numerical simulation can attend the temperature distribution inside the tunnel, Simulated and experimental temperature curve trend of the measured data.

2019 ◽  
Vol 23 (Suppl. 3) ◽  
pp. 711-717
Author(s):  
Chengzheng Cai ◽  
Keda Ren ◽  
Jiangfeng Liu ◽  
Shuang Liu

In petroleum engineering, nitrogen drilling is an important technology for building wellbores between surfaces and reservoirs. To uncover the downhole flow field and the change rules of rock temperature during drilling with nitrogen jet, we constructed a CFD model by coupling the property equations of nitrogen. The flow fields of nitrogen jet and rock temperature distribution at different times were simulated. Results showed that the high speed nitrogen jet can be efficiently generated because of the nozzle acceleration and the impingement effect can be induced during drilling. The temperature of the nitrogen jet decreased due to the Joule-Thomson effect. This phenomenon suggested that the nitrogen jet induced additional thermal cracks on the bottomhole rock, which was very beneficial for the improvement of rock-breaking efficiency.


Author(s):  
Junnosuke Okajima ◽  
Atsuki Komiya ◽  
Shigenao Maruyama

The objective of this work is to experimentally and numerically evaluate small-scale cryosurgery using an ultrafine cryoprobe. The outer diameter (OD) of the cryoprobe was 550 μm. The cooling performance of the cryoprobe was tested with a freezing experiment using hydrogel at 37 °C. As a result of 1 min of cooling, the surface temperature of the cryoprobe reached −35 °C and the radius of the frozen region was 2 mm. To evaluate the temperature distribution, a numerical simulation was conducted. The temperature distribution in the frozen region and the heat transfer coefficient was discussed.


2013 ◽  
Vol 444-445 ◽  
pp. 411-415 ◽  
Author(s):  
Fu Cheng Zhang ◽  
Shen Gen Tan ◽  
Xun Hao Zheng ◽  
Jun Chen

In this study, a Computational Fluid Dynamic (CFD) model is established to obtain the 3-D flow characteristic, temperature distribution of the pressurized water reactor (PWR) upper plenum and hot-legs. In the CFD model, the flow domain includes the upper plenum, the 61 control rod guide tubes, the 40 support columns, the three hot-legs. The inlet boundary located at the exit of the reactor core and the outlet boundary is set at the hot-leg pipes several meters away from upper plenum. The temperature and flow distribution at the inlet boundary are given by sub-channel codes. The computational mesh used in the present work is polyhedron element and a mesh sensitivity study is performed. The RANS equations for incompressible flow is solved with a Realizable k-ε turbulence model using the commercial CFD code STAR-CCM+. The analysis results show that the flow field of the upper plenum is very complex and the temperature distribution at inlet boundary have significant impact to the coolant mixing in the upper plenum as well as the hot-legs. The detailed coolant mixing patterns are important references to design the reactor core fuel management and the internal structure in upper plenum.


2014 ◽  
Vol 6 (2) ◽  
pp. 77-85
Author(s):  
Pratibha Joshi ◽  
Manoj Kumar

Many studies have been done previously on temperature distribution in inhomogeneous composite systems with perfect interface, having no discontinuities along it. In this paper we have determined steady state temperature distribution in two inhomogeneous composite systems with imperfect interface, having discontinuities in temperature and heat flux using decomposed immersed interface method and performed the numerical simulation on MATLAB.


2021 ◽  
pp. 1-18
Author(s):  
Xin Li ◽  
Jie Zhang ◽  
Cuinan Li ◽  
Weilin Chen ◽  
Jingbin He ◽  
...  

Abstract The borehole stability of the coalbed methane (CBM) well has always been vital in deep CBM exploration and development. The borehole instability of the deep CBM well is due to many complicated reasons. The change in the surrounding rock temperature is an important and easily overlooked factor among many reasons. In this research, we used methods that include experiment and numerical simulation to study the characteristic law of the borehole deformation induced by the changes in the surrounding rock temperature of deep CBM well. The experimental results of the stress–strain curves of five sets of experiments show that when the experimental temperature rises from 40 °C to 100 °C, the average stress when coal samples are broken gradually decreases from 81.09 MPa to 72.71 MPa. The proportion of plastic deformation in the entire deformation stage gradually increases from 7.8% to 25.7%. Moreover, the characteristics that some key mechanical parameters of coal samples change with the experimental temperature are fitted, and results show that as the experimental temperature rises from 40 °C to 100 °C, the compressive strength, elastic modulus, and main crack length of coal samples show a gradually decreasing trend. By contrast, the Pois-son's ratio and primary fracture angle show a gradually increasing trend. Moreover, the relativity of the linear equations obtained by fitting is all close to 1, which can accurately reflect the corresponding change trend. Numerical simulation results show that a high temperature of the surrounding rock of the deep CBM well results in a high range of stress concentration on the coal seam borehole and high deformation.


2021 ◽  
Vol 111 (11-12) ◽  
pp. 786-791
Author(s):  
Florian Sauer ◽  
Michael Gerstenmeyer ◽  
Volker Schulze

Innenverzahnungen, die aufgrund der Elektromobilität zunehmend im Fokus stehen, lassen sich mithilfe des Wälzschälens produktiv herstellen. Um diese Produktivität weiter zu steigern, müssen die wirkenden Verschleißmechanismen untersucht und verstanden werden. Der Beitrag behandelt die experimentelle Temperaturuntersuchung des Wälzschälens mit anschließender Modellierung der Wärmeverteilung, welche als erster Schritt zum Mechanismenverständnis angesehen werden kann.   Internal gears, which are increasingly in focus due to electromobility, can be manufactured productively with the help of power skiving. In order to further increase the productivity, the wear mechanisms have to be investigated and understood. This paper discusses the experimental temperature analysis of power skiving by subsequently modelling the heat distribution. This process can be seen as a first step towards understanding the underlying mechanisms.


2019 ◽  
Vol 71 (2) ◽  
pp. 284-294 ◽  
Author(s):  
AiHua Zhu ◽  
Si Yang ◽  
Qiang Li ◽  
JianWei Yang ◽  
Xi Li ◽  
...  

PurposeThe purpose of this paper is to study the wear evolution of metro wheels under the conditions of different track sequences, track composition and vehicle load and then to predict wheel wear and to guide its maintenance.MethodologyBy using the SIMPACK and MATLAB software, numerical simulation analysis of metro wheel wear is carried out based on Hertz theory, the FASTSIM algorithm and the Archard model. First of all, the vehicle dynamics model is established to calculate the motion relationship and external forces of wheel-rail in the SIMPACK software. Then, the normal force of wheel-rail is solved based on Hertz theory, and the tangential force of wheel-rail is calculated based on the FASTSIM algorithm through the MATLAB software. Next, in the MATLAB software, the wheel wear is calculated based on the Archard model, and a new wheel profile is obtained. Finally, the new wheel profile is re-input into the vehicle system dynamics model in the SIMPACK software to carry out cyclic calculation of wear.FindingsThe results show that the setting order of different curves has an obvious influence on wear when the proportion of the straight track and the curve is fixed. With the increase in running mileage, the severe wear zone is shifted from tread to flange root under the condition of the sequence-type track, but the wheel wear distribution is basically stable for the unit-type track, and their wear growth rates become closer. In the tracks with different straight-curved ratio, the more proportion the curved tracks occupy, the closer the severe wear zone is shifted to flange root. At the same time, an increase in weight of the vehicle load will aggravate the wheel wear, but it will not change the distribution of wheel wear. Compared with the measured data of one city B type metro in China, the numerical simulation results of wheel wear are nearly the same with the measured data.Practical implicationsThese results will be helpful for metro tracks planning and can predict the trend of wheel wear, which has significant importance for the vehicle to do the repair operation. At the same time, the security risks of the vehicle are decreased economically and effectively.Originality/valueAt present, many scholars have studied the influence of metro tracks on wheel wear, but mainly focused on a straight line or a certain radius curve and neglected the influence of track sequence and track composition. This study is the first to examine the influence of track sequence on metro wheel wear by comparing the sequence-type track and unit-type track. The results show that the track sequence has a great influence on the wear distribution. At the same time, the influence of track composition on wheel wear is studied by comparing different straight-curve ratio tracks; therefore, wheel wear can be predicted integrally under different track conditions.


2018 ◽  
Vol 2 (3) ◽  
pp. 32 ◽  
Author(s):  
Benjamin Oyegbile ◽  
Guven Akdogan ◽  
Mohsen Karimi

In this study, an experimentally validated computational model was developed to investigate the hydrodynamics in a rotor-stator vortex agglomeration reactor RVR having a rotating disc at the centre with two shrouded outer plates. A numerical simulation was performed using a simplified form of the reactor geometry to compute the 3-D flow field in batch mode operations. Thereafter, the model was validated using data from a 2-D Particle Image Velocimetry (PIV) flow analysis performed during the design of the reactor. Using different operating speeds, namely 70, 90, 110, and 130 rpm, the flow fields were computed numerically, followed by a comprehensive data analysis. The simulation results showed separated boundary layers on the rotating disc and the stator. The flow field within the reactor was characterized by a rotational plane circular forced vortex flow, in which the streamlines are concentric circles with a rotational vortex. Overall, the results of the numerical simulation demonstrated a fairly good agreement between the Computational Fluid Dynamics (CFD) model and the experimental data, as well as the available theoretical predictions. The swirl ratio β was found to be approximately 0.4044, 0.4038, 0.4044, and 0.4043 for the operating speeds of N = 70, 90, 110, and 130 rpm, respectively. In terms of the spatial distribution, the turbulence intensity and kinetic energy were concentrated on the outer region of the reactor, while the circumferential velocity showed a decreasing intensity towards the shroud. However, a comparison of the CFD and experimental predictions of the tangential velocity and the vorticity amplitude profiles showed that these parameters were under-predicted by the experimental analysis, which could be attributed to some of the experimental limitations rather than the robustness of the CFD model or numerical code.


Sign in / Sign up

Export Citation Format

Share Document