Antifungi Efficacy of the Compound Preparation of Anemarrhena asphodeloides Bunge on the Drug Resistant Strain of Candida Albicans

2012 ◽  
Vol 518-523 ◽  
pp. 5569-5572 ◽  
Author(s):  
Lian Lan Ma ◽  
Zhi Chun Liu ◽  
Wen Ping Zhang ◽  
Hua Yan Chen ◽  
Xiao Yun Wu

To investigate the efficacy of the compound preparation named KZY-2 which include the effective group formula of anemarrhena asphodeloides bunge and rhizoma coptidis on the fluconazole and ifraconazo resistant strains of Candida albicans respectively in vitro. The fluconazole and ifraconazo resistant strains of Candida albicans were sieved by drug sensitive scrip test and the diameter of inhibition zone was measured adopting the method of agar plate diffusion, reference to the M27-A recommended by the United States National Laboratory Standards Committee (NCCLS), the minimal inhibitive concentration(MIC,mg/m1) of KZY-2 against the the standard strain(ATCC32354) and the fluconazole and ifraconazo resistant strains of candida albicans was measured respectively. Results showed that the 12 fluconazole and ifraconazo resistant strains which named RC1 to RC12 were sieved from the 20 strains Candida albicans isolated from clinic, the diameters of inhibited zone of KZY-2 against ATCC32354 was 32mm and against RC1~RC12 was between 12mm and 28mm, the MIC of KZY-2 against ATCC32354 was 312.5μg/m1 and against RC1~RC12 was between 625μg /m1 and 5000μg /m1. These results indicate that KZY-2 has good antifungi efficacy on the standard strain and the fluconazole and ifraconazo resistant strains of Candida albicans in vitro.

2009 ◽  
Vol 54 (3) ◽  
pp. 1232-1236 ◽  
Author(s):  
Mirva Lehtopolku ◽  
Ulla-Maija Nakari ◽  
Pirkko Kotilainen ◽  
Pentti Huovinen ◽  
Anja Siitonen ◽  
...  

ABSTRACT There is a paucity of information regarding antimicrobial agents that are suitable to treat severe infections caused by multidrug-resistant Campylobacter spp. Our aim was to identify agents that are potentially effective against multiresistant Campylobacter strains. The in vitro activities of 20 antimicrobial agents against 238 Campylobacter strains were analyzed by determining MICs by the agar plate dilution method or the Etest. These strains were selected from 1,808 Campylobacter isolates collected from Finnish patients between 2003 and 2005 and screened for macrolide susceptibility by using the disk diffusion test. The 238 strains consisted of 183 strains with erythromycin inhibition zone diameters of ≤23 mm and 55 strains with inhibition zone diameters of >23 mm. Of the 238 Campylobacter strains, 19 were resistant to erythromycin by MIC determinations (MIC ≥ 16 μg/ml). Given that the resistant strains were identified among the collection of 1,808 isolates, the frequency of erythromycin resistance was 1.1%. All erythromycin-resistant strains were multidrug resistant, with 18 (94.7%) of them being resistant to ciprofloxacin (MIC ≥ 4 μg/ml). The percentages of resistance to tetracycline and amoxicillin-clavulanic acid (co-amoxiclav) were 73.7% and 31.6%, respectively. All macrolide-resistant strains were susceptible to imipenem, meropenem, and tigecycline. Ten (52.6%) multiresistant strains were identified as being Campylobacter jejuni strains, and 9 (47.4%) were identified as being C. coli strains. These data demonstrate that the incidence of macrolide resistance was low but that the macrolide-resistant Campylobacter strains were uniformly multidrug resistant. In addition to the carbapenems, tigecycline was also highly effective against these multidrug-resistant Campylobacter strains in vitro. Its efficacy for the treatment of human campylobacteriosis should be evaluated in clinical trials.


2021 ◽  
pp. 152808372110505
Author(s):  
Nesrine Bhouri ◽  
Faten Debbabi ◽  
Abderrahmen Merghni ◽  
Esther Rohleder ◽  
Boris Mahltig ◽  
...  

The main purpose of this paper is to develop a new manufacturing process leading to have antibacterial dyed non-absorbable braided polyethylene terephthalate (PET) sutures using biocompatible and non-toxic products. This manufacturing process allows better visibility of sutures in the surgical field and reduces the risk of infections and inflammatory reactions without affecting the mechanical properties while meeting the United States Pharmacopeia (USP) requirements. Plasma functionalization, acrylic acid (AA) grafting, and bioactive chitosan (CH) coating were used before the dyeing process with a biocompatible non-toxic acid dye, approved by the Food and Drug Administration (FDA). The influence of experimental parameters on the suture properties and the K/S values of the dyed sutures are investigated. Infrared spectroscopy confirms the presence of new bonds to immobilize chitosan on the surface of the suture. Mechanical tests confirm that the mechanical properties of sutures have not been affected. The in vitro antibacterial effect of dyed PET sutures showed an inhibition zone of 11 mm against S. aureus, 4 mm against P. aeruginosa, and 1 mm against E. coli. This study reveals that the new finishing process of sutures is a promising method to achieve an antibacterial effect with a uniform shade and smooth surfaces.


2015 ◽  
Vol 2 (2) ◽  
pp. 229-237
Author(s):  
Istiaq Ahmed ◽  
Md Tofazzal Islam ◽  
Md Akhter Hossain Chowdhury ◽  
Md Kamruzzaman

This study was carried out to isolate, screen and characterize arsenic (As) resistant bacteria from As contaminated soils of Dumrakandi and Matlab under Faridpur and Chandpur districts and to evaluate their efficiency in reducing As toxicity against rice seedlings during germination. Thirteen strains were isolated from the soils which showed resistance to different levels of sodium arsenite (viz. 5, 10, 20 and 40 mM) in both agar plate and broth assay using BSMY I media. Among the isolates, BTL0011, BTL0012, BTL0015 and BTL0022 showed highest resistance to 40 mM sodium arsenite. Gram staining and KOH solubility test revealed that five strains were gram positive and rest eight was gram negative. They grew well in the liquid media at pH 5.5 to 8.5. In-vitro rice seedling bioassay with two superior isolates (BTL0011 and BTL0022) revealed that As resistant strains significantly enhanced seed germination of BRRI dhan29 and BRRI dhan47 at 60 ppm As. This study was laid out in CRD with three replications. The performance of BTL 0022 was superior to BTL0011. The overall results suggest that BTL0011 and BTL0022 can be used for bioremediation of As contaminated soils and to increase the germination and seedling growth of rice in As contaminated soils.Res. Agric., Livest. Fish.2(2): 229-237, August 2015


2009 ◽  
Vol 58 (8) ◽  
pp. 1074-1079 ◽  
Author(s):  
Na Guo ◽  
Jingbo Liu ◽  
Xiuping Wu ◽  
Xingming Bi ◽  
Rizeng Meng ◽  
...  

Thymol (THY) was found to have in vitro antifungal activity against 24 fluconazole (FLC)-resistant and 12 FLC-susceptible clinical isolates of Candida albicans, standard strain ATCC 10231 and one experimentally induced FLC-resistant C. albicans S-1. In addition, synergism was observed for clinical isolates of C. albicans with combinations of THY–FLC and THY–amphotericin B (AMB) evaluated by the chequerboard microdilution method. The interaction intensity was determined by spectrophotometry for the chequerboard assay, and the nature of the interactions was assessed using two non-parametric approaches [fractional inhibitory concentration index (FICI) and ΔE models]. The interaction between THY–FLC or THY–AMB in FLC-resistant and -susceptible strains of C. albicans showed a high percentage of synergism by the FICI method and the ΔE method. The ΔE model gave results consistent with FICI, and no antagonistic action was observed in the strains tested.


Planta Medica ◽  
2000 ◽  
Vol 66 (5) ◽  
pp. 435-438 ◽  
Author(s):  
Yasuhiro Iida ◽  
Ki-Bong Oh ◽  
Mikako Saito ◽  
Hideaki Matsuoka ◽  
Hiroshi Kurata

1998 ◽  
Vol 42 (10) ◽  
pp. 2503-2510 ◽  
Author(s):  
Maurizio Del Poeta ◽  
Wiley A. Schell ◽  
Christine C. Dykstra ◽  
Susan K. Jones ◽  
Richard R. Tidwell ◽  
...  

ABSTRACT Aromatic dicationic compounds possess antimicrobial activity against a wide range of eucaryotic pathogens, and in the present study an examination of the structures-functions of a series of compounds against fungi was performed. Sixty-seven dicationic molecules were screened for their inhibitory and fungicidal activities againstCandida albicans and Cryptococcus neoformans. The MICs of a large number of compounds were comparable to those of the standard antifungal drugs amphotericin B and fluconazole. Unlike fluconazole, potent inhibitory compounds in this series were found to have excellent fungicidal activities. The MIC of one of the most potent compounds against C. albicans was 0.39 μg/ml, and it was the most potent compound against C. neoformans (MIC, ≤0.09 μg/ml). Selected compounds were also found to be active againstAspergillus fumigatus, Fusarium solani,Candida species other than C. albicans, and fluconazole-resistant strains of C. albicans and C. neoformans. Since some of these compounds have been safely given to animals, these classes of molecules have the potential to be developed as antifungal agents.


Author(s):  
Noura Berakdar ◽  
Abdulkarim Radwan

The main goal of this study was to investigate the antifungal activity of clove oil against candida albicans of vaginal candidiasis in females from Syria. An in vitro study was carried out using the following Candida albicans strains involved in vaginal candidiasis using the well diffusion (WD) testing.Candida albicans (ATCC 90028) and 15 strains were compiled from Aleppo University Hospital. These strains were collected from women having vaginal candidiasis. The antifungal activity of clove oil was determined in the form of inhibition zone using antifungal assay by agar WD testing.In all experiments, the obtained results indicated that clove oil has inhibitory effects on Candida albicans (ATCC 90028) and against15 fungal strains. This study showed that clove oil was active against the tested Candida albicans strains. Clove oil was more effective against Candida albicans compared to the antifungal antibiotics nystatin, ketoconazole and itraconazol. Clove oil may have potential for use in the development of clinically useful antifungal preparations. Therefore, clove oil might be clinically effective in the natural prevention treatment of vaginal candidiasis.       


2011 ◽  
Vol 55 (7) ◽  
pp. 3631-3634 ◽  
Author(s):  
David J. Farrell ◽  
Lisa C. Liverman ◽  
Douglas J. Biedenbach ◽  
Ronald N. Jones

ABSTRACTJNJ-Q2 is a broad-spectrum bactericidal fluoroquinolone with potent activity against Gram-positive and -negative pathogens. In this study, thein vitroactivity of JNJ-Q2 was evaluated against 511 selectedStaphylococcus aureussamples isolated in 2008-2009 from patients with acute bacterial skin and skin structure infections in the United States by using reference methodology. JNJ-Q2 was the most potent fluoroquinolone tested overall (MIC50and MIC90, 0.12 and 0.5 μg/ml, respectively) and against methicillin- and fluoroquinolone-resistant subgroups in direct comparisons to moxifloxacin, levofloxacin, and ciprofloxacin (each being ≥16-fold less potent than JNJ-Q2).


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Sara C Di Rienzi ◽  
Juliet Jacobson ◽  
Elizabeth A Kennedy ◽  
Mary E Bell ◽  
Qiaojuan Shi ◽  
...  

Over the past century, soybean oil (SBO) consumption in the United States increased dramatically. The main SBO fatty acid, linoleic acid (18:2), inhibits in vitro the growth of lactobacilli, beneficial members of the small intestinal microbiota. Human-associated lactobacilli have declined in prevalence in Western microbiomes, but how dietary changes may have impacted their ecology is unclear. Here, we compared the in vitro and in vivo effects of 18:2 on Lactobacillus reuteri and L. johnsonii. Directed evolution in vitro in both species led to strong 18:2 resistance with mutations in genes for lipid biosynthesis, acid stress, and the cell membrane or wall. Small-intestinal Lactobacillus populations in mice were unaffected by chronic and acute 18:2 exposure, yet harbored both 18:2- sensitive and resistant strains. This work shows that extant small intestinal lactobacilli are protected from toxic dietary components via the gut environment as well as their own capacity to evolve resistance.


2005 ◽  
Vol 49 (5) ◽  
pp. 1745-1752 ◽  
Author(s):  
Sarah MacPherson ◽  
Bassel Akache ◽  
Sandra Weber ◽  
Xavier De Deken ◽  
Martine Raymond ◽  
...  

ABSTRACT The human pathogen Candida albicans is responsible for a large proportion of infections in immunocompromised individuals, and the emergence of drug-resistant strains is of medical concern. Resistance to antifungal azole compounds is often due to an increase in drug efflux or an alteration of the pathway for synthesis of ergosterol, an important plasma membrane component in fungi. However, little is known about the transcription factors that mediate drug resistance. In Saccharomyces cerevisiae, two highly related transcriptional activators, Upc2p and Ecm22p, positively regulate the expression of genes involved in ergosterol synthesis (ERG genes). We have identified a homologue in C. albicans of the S. cerevisiae UPC2/ECM22 genes and named it UPC2. Deletion of this gene impaired growth under anaerobic conditions and rendered cells highly susceptible to the antifungal drugs ketoconazole and fluconazole. Conversely, overexpression of Upc2p increased resistance to ketoconazole, fluconazole, and fluphenazine. Azole-induced expression of the ERG genes was abolished in a Δupc2 strain, while basal levels of these mRNAs remained unchanged. Importantly, the purified DNA binding domain of Upc2p bound in vitro to putative sterol response elements in the ERG2 promoter, suggesting that Upc2p increases the expression of the ERG genes by directly binding to their promoters. These results provide an important link between changes in the ergosterol biosynthetic pathway and azole resistance in this opportunistic fungal species.


Sign in / Sign up

Export Citation Format

Share Document