Causation Analysis of Roof Cutting and Support Crushing in Shallow-Buried Large Mining Height Long Wall Working Face of Western China

2012 ◽  
Vol 524-527 ◽  
pp. 548-551
Author(s):  
Yan Fang Ren ◽  
Gang Xu ◽  
De Bing Mao ◽  
Jiang Liu

During the mining process of shallow buried long wall working face, the breaking of main roof easily result in fracture belt’s connectivity with the surface. The paper has studied the causation of roof cutting and support crushing in shallow-buried large mining height long wall working face of Suancigou coal mine which is in Ordos Inner Mongolia. The main reasons are as follow, poor effect of forced roof caving; unreasonable structure type of support; lower setting load; unevenly stressing between front and rear columns; low advancing speed or the working face. So in order to avoid the fully mechanized supports crushing accident, the working face advancing speed should be accelerated during the period of the pressure change of working face.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Feng Ju ◽  
Meng Xiao ◽  
Zequan He ◽  
Pai Ning ◽  
Peng Huang

Ultra-thick hard sandstone roofs present high thickness, poor delamination, and wide caving range. The strata pressure of the working face during actual mining increases, having a significant influence on the safe mining of the working face. Especially, in the mining areas of western China, the fully mechanized mining faces with high mining height and high-strength mining are more prominent. Understanding the fractures and stress evolution characteristics of the ultra-thick hard sandstone roof during actual mining is of high significance to control the dynamic pressure on the working face. In this paper, the typical ultra-thick hard sandstone roof of the Xiaojihan coal mine was taken as an example. The structural and chemical composition characteristics were analyzed. Besides, the fracture characteristics of ultra-thick hard roof during the working face mining were analyzed. Moreover, the fracture structure consistency was verified through physical simulation and a field measurement method. Finally, the stress evolution laws in the ultra-thick hard sandstone roof fracture were studied through numerical simulation. The findings demonstrated that (1) the ultra-thick hard sandstone roof was composed of inlaid coarse minerals, which had compact structure, while the Protodyakonov hardness reached up to 3.07; (2) under the high-strength mining condition of fully mechanized mining face with large mining height, the ultra-thick hard sandstone roof had the characteristics of brittle fracture, with a caving span of 12 m; (3) under the high-strength mining condition of fully mechanized mining face with large mining height, the ultra-thick hard sandstone roof followed the stress evolution laws that were more sensitive to the neighboring goaf. Therefore, it was necessary to reduce the fracture span or layering of ultra-thick hard sandstone roof through the manual intervention method adoption or increase either the strength of coal pillar or supporting body, to resist the impact generated during ultra-thick hard sandstone roof fracture.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1685
Author(s):  
Qingxiang Huang ◽  
Yanpeng He ◽  
Feng Li

The large mining height (LMH) in shallow coal seam has been widely applied in the Shenfu coalfield, China. The dynamic load is obvious, and the rib spalling is serious when the LMH working face concerns roof weighting. The advanced breaking position of the roof affects the strength of the ground pressure when the roof is broken. Firstly, based on a large number of actual measurements and physical simulation experiments, the rock formation in the fall zone, where the articulated structure cannot be articulated between the coal seam and the main roof, is called the equivalent immediate roof (EIR). When the mining height increases, the thickness of the EIR increases non-linearly. Next, based on the theory of “elastic foundation beam”, a mechanical model for the advanced breaking of the roof is established in shallow coal seam, and the calculation equation for the advanced breaking position of the roof is given; then, designed and carry out boreholes of the no. 22201 working face in the Zhangjiamao Coal Mine. The theoretical calculation of key strata results (5.6–6.9 m) are in the range of field measurement results (5–8 m). According to the field measurement results, the roof movement of the LMH working face is ahead of the roof weighting. Finally, we define the thickness of EIR and the mining height ratio as the immediate mining ratio ki, which affects the degree of filling of the goaf and determines the structural form of the main roof. When the ki is small, the goaf is fully filled; when the ki is large, the goaf is fully filled. Under the same conditions, different filling rate conditions will form different roof structures. Results of this research can be helpful to control roof weighting and provide early warning of possible safety problems related to the LMH working face in shallow coal seam.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Xue-bo Zhang ◽  
Ming Yang

Determining the optimal extrication location of the high extraction roadway can improve the gas extrication effect of highly gassy mine and solve the problem of gas concentration overrun at the upper corner, which is of great significance to safety and efficient mine production. According to the actual situation of mine, the gas gushing amount in the goaf, pressure difference at both ends of the working face, the 3D porosity, and permeability distribution of the caving zone and fissure zone were obtained by field measurement and numerical calculation. Through theoretical calculation, the proper extraction site of a high-position alley was determined. On this basis, the optimal extraction site of a high-position alley was determined by numerical analysis of the gas extraction effect at different sites. The results show that as the perpendicular distance between high-position alley and goaf floor increases, the gas extraction amount increases first and then decreases. The concentration of extraction gas gradually increases, and the increasing trend is gradually diminished. With the increase of the horizontal distance between the air return way and the high-position alley, the gas extraction amount and gas extraction concentration increase first and then decrease. The optimal extraction site of a high-position alley should be 39 m vertically away from the goaf floor and 30 m horizontally away from the air return way.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fei Liu ◽  
Zhanguo Ma ◽  
Yongsheng Han ◽  
Zhimin Huang

With the deployment of China’s energy strategy in the western regions, complex geological mining conditions such as thin bedrock and ultrathick seams in western China have caused a series of problems such as serious deformation of the surrounding rock at the ends of the working face and the increase in the lead abutment pressure of the roadways; the research on end roof deformation in the resource exploitation in western China has become one of the great demands of the industry. Based on the failure characteristics of rock mass, relying on the actual mining geological conditions of a coal mine in Inner Mongolia, the failure characteristics of the overlying rock strata under the influence of mining were simulated and analyzed using similar material simulation experiment, which intuitively reproduced the failure and deformation processes of the immediate roof, main roof, and key strata and revealed the mechanical mechanism of the directional weakening of the end roof. It is of great significance for the stability control of the surrounding rock at the end of the fully mechanized caving face in the thin bedrocks and ultrathick seams, reducing the abutment pressure of gate roadway and controlling the spontaneous combustion of residual coal in the goaf.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zhenhua Li ◽  
Yingkun Pang ◽  
Yongsheng Bao ◽  
Zhanyuan Ma

In the process of high-intensity and large-space mining in Shendong mining area, various surface cracks are generated on the surface, resulting in serious damage to the surface buildings and the local ecological environment. To study the influence of overlying rock movement on surface failure of near-field single key strata of near-shallow buried and large mining height working face, the relationship between overburden movement, strata pressure appearance, and surface failure at working face 52307 in Daliuta mining area was analyzed by field measurement and numerical simulation. The results show the following: (1) there is only one thick and hard key stratum in the overburden of large mining height and near-shallow buried working face. Under the condition of presplitting roof blasting, the first weighting step is still as high as 95 m, and the periodic breaking step of roof is 20–30 m. During the weighting, the working resistance of support is still close to the rated resistance. (2) The single key stratum plays an obvious role in controlling overburden movement. After the first weighting of the working face, a stepped subsidence crack appears on the surface within a short time, and the crack lags behind the working face for about 5 m. (3) During each periodic weighting process, the breaking and subsidence of key blocks are accompanied by surface cracks.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xie Fuxing

The gob-side roadway of 130205, a large-mining-height working face in the Yangchangwan coal mine, was investigated in terms of the mine pressure law and support technology for large mining heights and narrow coal pillars for mining roadways. The research included field investigations, theoretical analysis, numerical simulation, field tests, and other methods. This paper analyzes the form of movement for overlying rock structure in a gob-side entry with a large mining height and summarizes the stress state and deformation failure characteristics of the surrounding rock. The failure mechanism of the surrounding rock of the gob-side roadway and controllable engineering factors causing deformation were analyzed. FLAC3D numerical simulation software was used to explore the influence law of coal pillar width, working face mining height, and mining intensity on the stability of the surrounding rock of the gob-side roadway. Ensuring the integrity of the coal pillar, improving the coordination of the system, and using asymmetric support structures as the core support concept are proposed. A reasonably designed support scheme for the gob-side roadway of the working face for 130205 was conducted, and a desirable engineering effect was obtained through field practice verification.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4208 ◽  
Author(s):  
Qingxiang Huang ◽  
Yanpeng He

The overburden movement of the large mining height working face of shallow buried thin bedrock (SBTB) is a complex engineering problem with “time-space-intension”, which is of great significance to realize efficient and safe mining in the northern Shaanxi mining area. Based on the research object of No. 22201 working face in Zhangjiamao Coal Mine, the roof structure characteristics of large mining height working face in SBTB are researched by field drilling measurement, laboratory test, physical and numerical simulation. The results show that: (1) Based on the measured data of the drillholes, it is concluded that under the mining conditions of SBTB with large mining height, the roof movement is ahead of the weighting of the working face, and the working resistance has a significant time effect. The advanced movement distance is about 20 m, which can be used as an early warning index of the weighting. The lag movement distance in the roof with horizon of 30 m is two periodic weighting intervals, which are about 26 m. (2) The first weighting interval of the working face is 32 m. The roof first break has obvious step sinking phenomenon, and the measured surface appears at a position 45 m away from the transport slot. It is statistically concluded that the periodic weighting interval is 9.5~16.5 m, the average weighting interval is 13 m, which is equivalent to the periodic dynamic crack spacing of the surface. (3) The results of field measurement and physical simulation show that the breaking angle of the roof of the No. 22201 large mining height is about 66°, and the periodic stepping distance of the T-junction suspension area is 6~8m. Along the strike of the working face, the roof breaking is mainly arc arched. The research results ensure the safe and green mining of shallow coal seam.


2011 ◽  
Vol 328-330 ◽  
pp. 1671-1674
Author(s):  
Ying Ma ◽  
Sheng Zhong

Using unified model and theory of rock pressure, the problems, such as caving of stope roof with large mining height and destruction of support, strata movement and surface subsidence, are unified analyzed and researched. The results show that: pressure shell is dynamic shell, which moves forward with the propulsion of working face; with the increase of mining height on the face, the height of fracture zone in coal seam increases, not continuously, but jumpily; with the increase of mining height, support load rises, but the degree of this rise decreases gradually, increased degree of immediate roof weight should be greater than that of given deformation pressure. The results provide necessary basis for reliability of hydraulic support on the working face with large mining height and safety work in the underground.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Guozhen Zhao ◽  
Baisheng Zhang ◽  
Lihong Zhang ◽  
Chao Liu ◽  
Shuai Wang

Exploiting the working face in coal mines using a super long mining length and large mining height has become important for intensive production with high yield and high efficiency. The paper develops a roof structure model to analyze the influence of 195 m, 242.4 m, and 376 m working face lengths at large mining height in Wangzhuang Coal Mine in China as the case study. The roof fracture characteristics, migration law, and strata behavior law under different working face lengths are compared and studied by numerical simulation, and the reliability of support selection in the working face at large mining height is analyzed by field measurement statistics. The results show that the roof fracture mode of a super large working face is a successive layered fracture. The length of the working face has little effect on the roof fracture step length, and the fracture step length is positively correlated with the thickness of the rock stratum. The roof subsidence law for a super large working face is different from the intermittent subsidence of the unimodal Gaussian distribution curve of ordinary working faces, which shows the intermittent subsidence of multiple ordinary working faces. The roof periodic weighting of a super large working face, which fluctuates violently within 100 m at both ends, is more drastic than that of an ordinary working face as a whole. Field statistical analysis shows it is more appropriate to choose high-strength support for a super large working face.


Sign in / Sign up

Export Citation Format

Share Document