Microstructures, Mechanical Properties and Textures of Deep Drawing Dual-Phase Steel

2012 ◽  
Vol 535-537 ◽  
pp. 670-673
Author(s):  
Jie Yun Ye ◽  
Zheng Zhi Zhao ◽  
Zhi Gang Wang ◽  
Ai Min Zhao ◽  
Jing Jing Chen

C-Mn-Cr-Mo dual phase steel was piloted in laboratory. OM, SEM, tensile tests and XRD were used to characterize the microstructures, mechanical properties and to determine the texture. The results indicate that when annealed at 860 °C, the tensile strength of the tested steel is 440 MPa, elongation and r value exceed 35% and 1.4, respectively. With the temperature increases from 820°C to 860°C, the average grain size of ferrite increases and ferrite trends to be uniform gradually, therefore, the r value increase gradually. When the temperature is higher than 860°C, bainite forming results in reducing of r value. Al could weaken the tendency of heterogeneous deformation and modified the annealing texture by refining hot-rolling grain size. Mo-based carbides existed in hot-rolled sheet developed {111} texture in the stage of ferrite recrystallization, then re-dissolved in intercritial annealing stage so as to improve hardenability.

Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 87 ◽  
Author(s):  
Vladimir Promakhov ◽  
Marina Khmeleva ◽  
Ilya Zhukov ◽  
Vladimir Platov ◽  
Anton Khrustalyov ◽  
...  

A series of casting experiments was conducted with A356 aluminum alloys by applying vibration treatment and using Al-TiB2 composite master alloys. The main vibration effects include the promotion of nucleation and a reduction in as-cast grain size. Using composite master alloys with titanium diboride microparticles allows further reduction in the average grain size to 140 µm. The reasons for this behavior are discussed in terms of the complex effect on the melt, considering the destruction of dendrites, and the presence of additional crystallization centers. Tensile tests were performed on the samples obtained during the vibration treatment and with titanium diboride particles. The tensile strength increased from 182 to 227 MPa after the vibration treatment for the alloys containing titanium diboride.


2011 ◽  
Vol 339 ◽  
pp. 215-218
Author(s):  
Bin Bin Sun ◽  
Zhi Wei Jia ◽  
Hong Mei Zhang

The experiments were carried out on the φ450 hot rolling mill at the State Key laboratory of Rolling and Automatic of Northeastern University. The effect of different finish-rolling reduction on the microstructure and mechanical properties of C-Si-Mn hot rolled dual-phase steel were studied. It is found that the grain size of the ferrite would be finer with the increasing of finish-rolling reduction. Through the controlling of the finish-rolling reduction, grain size of the ferrite can be finer, so the better properties can be obtained by fine grain and sub-grain strengthened. With the low volume of lath martensite, the elongation of sample is high, the yield-strength ratio is low, and complex properties are better.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2339
Author(s):  
Jinpei Guo ◽  
Minting Zhong ◽  
Wei Zhou ◽  
Yajiu Zhang ◽  
Zhigang Wu ◽  
...  

Isothermal annealing of a eutectic dual phase Ni–Mn–Sn–Fe alloy was carried out to encourage grain growth and investigate the effects of grain size of the γ phase on the martensitic transformation behaviour and mechanical properties of the alloy. It is found that with the increase of the annealing time, the grain size and volume fraction of the γ phase both increased with the annealing time predominantly by the inter-diffusion of Fe and Sn elements between the γ phase and the Heusler matrix. The isothermal anneals resulted in the decrease of the e/a ratio and suppression of the martensitic transformation of the matrix phase. The fine γ phase microstructure with an average grain size of 0.31 μm showed higher fracture strength and ductility values by 28% and 77% compared to the coarse-grained counterpart with an average grain size of 3.31 μm. The fine dual phase microstructure shows a quasi-linear superelasticity of 4.2% and very small stress hysteresis during cyclic loading, while the coarse dual phase counterpart presents degraded superelasticity of 2.6% and large stress hysteresis. These findings indicate that grain size refinement of the γ phase is an effective approach in improving the mechanical and transformation properties of dual phase Heusler alloys.


2012 ◽  
Vol 217-219 ◽  
pp. 433-436
Author(s):  
Zhi Fen Wang ◽  
Rong Dong Han ◽  
Shun Bin Zhou ◽  
Hai E Huang ◽  
Li Xin Wu

Effect of phosphorus content on the mechanical properties and microstructure of IF steel sheets was investigated. Average grain size and recrystallization texture were measured by electron backscatter diffraction (EBSD). The results showed that the higher P resulted in higher tensile strength and lowered the elongation and r-value. The average grain size increased with decreasing P content. The //ND (γ-fiber) pole intensity had a lowest value for IF steel with the highest P content which in turn deteriorate r-value. The element P played an important role in recrystallization process which affected the mechanical properties and microstructure of IF steels.


2017 ◽  
Vol 891 ◽  
pp. 176-181
Author(s):  
Martin Šebek ◽  
Peter Horňak ◽  
Svätoboj Longauer ◽  
Peter Zimovčák ◽  
Pavol Zahumenský

The development of ultrafine ferrite grain size has become one of attractive way how to improve the behavior of dual phase (DP) steels. The other possible way how to enhance mechanical properties of DP steels is to modify the chemical composition. Therefore object of our investigation was the dual phase steel with modified alloying (three times higher Cr content with addition of phosphorus). The dual phase steel was annealed in laboratory conditions in accordance with three specified annealing cycles: into intercritical region (780°C), into austenite region (920°C) and into austenite region (920°C) by subsequently cooling into intercritical region (780°C) with the hold at the temperature of 495°C. The obtained microstructure after selected annealing regimes consists of three phases (ferritic matrix, martensite and martensite/bainite grains) with different size and distribution. For studied annealing regimes were clearly defined mechanical properties such as: YS, UTS, elongation, n-parameter and ratio YS/UTS. It was defined the scheme of microstructure evolution on base of austenite grain size during the continual cooling process with defined three phases: 1) the hard martensite formed on the grain boundary; 2) the soft interior bainite and 3) the hard isolated martensite.


2012 ◽  
Vol 251 ◽  
pp. 351-354
Author(s):  
Hui Wang ◽  
Cheng Jiang Lin ◽  
Zhao Jun Deng ◽  
Ji Bin Liu

The difference in microstructures and properties of 600MPa cold rolled dual phase steel with the different composition had been studied in this paper. It can be noticed that the Si-Mn-Cr steel have finer ferrite and more martensite whose content is about 25%; the Mn-Cr-Mo steel have coarser ferrite and some coarse pearlite as well as little martensite; the microstructures of the Mn-Al-Mo steel are consist of mainly ferrite which have even grain size and 16% martensite which distributed homogenously along the ferrite grain boundaries. The difference in microstructure makes the steel own the different properties. The Si-Mn-Cr steel has the highest tensile strength and yield strength but the worst elongation, the Mn-Cr-Mo steel has the lowest tensile strength, the Mn-Al-Mo steel has the an excellent mechanical properties with low yield strength and high tensile strength as well as higher elongation.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 777
Author(s):  
Hongbo Pan ◽  
Xiaohui Shen ◽  
Dongyang Li ◽  
Yonggang Liu ◽  
Jinghua Cao ◽  
...  

Dual phase steel generally has poor deep drawing property with a low r value less than 1.0, making it difficult to be used for deep drawing automotive parts. In order to improve the mechanical properties of the steel through heat treatment, effect of heat treatments with different conditions on a Fe-Si-Cr-Mo-C deep drawing dual-phase steel was investigated with the aim of identifying effective heat treatment parameters for effective modification towards optimal properties. Relevant thermal dilation and heat treatment experiments were performed. Corresponding characters were investigated. The results show that island martensite can be obtained at low cooling rate. With the increase of cooling rate, the formation of pearlite and bainite is favored. During annealing at low temperatures, recrystallization of the steel is incomplete with the presence of the shear bands. With the increase of annealing temperature, the recrystallization process is gradually complete, and the number of high angle grain boundaries increases significantly. The ratio of gamma orientation components to alpha orientation components decreases first and then increases with the increase of annealing temperature. The strain hardening exponent and r value show an upward trend with respect to annealing temperature, and the r value is as high as 1.15.


2016 ◽  
Vol 879 ◽  
pp. 1594-1599
Author(s):  
Daniella Gomes Rodrigues ◽  
Cláudio Moreira Alcântara ◽  
Dagoberto Brandão Santos ◽  
Tarcísio Reis de Oliveira ◽  
Berenice Mendonça Gonzalez

The ferritic stainless steels are materials used in several segments due to the excellent combination of mechanical properties and corrosion resistance. The mechanical properties of these alloys are strongly dependent on the microstructural characteristics and crystallography texture. The aim of this experimental study is to investigate the roles of the grain size of the hot rolled sample on the development of the microstructure, texture and formability of ferritic stainless steel. The main elements of chemical composition of the steel under investigation were 16.0 %Cr, 0.021 %C, 0.024 %N and 0.35 %Nb. Coarse and fine grains samples were cold rolled up to 90% thickness reduction and annealed at 880°C with soaking time of the 24 s. The texture measurements were performed by Electron Backscattered Diffraction (EBSD) in the longitudinal section. The formability was evaluated by the R-value and planar anisotropy (Δr) in tensile tests. The final microstructure after annealed was more homogenous for smaller initial grain size sample. This condition was favorable to develop γ-fiber, with sharpness intensity in 111121 components. The highest R-value and smallest planar anisotropy was obtained for a {111}/{001} ratio around 5.37. On the other hand, coarser initial grain size sample had showed a heterogeneous microstructure and texture, performing badly in mechanical tests (anisotropy).


Sign in / Sign up

Export Citation Format

Share Document