Effect of Liquid-Die-Forging Pressure on Microstructure and Mechanical Properties of A390 Sloping Swash-Plate

2012 ◽  
Vol 538-541 ◽  
pp. 1356-1359
Author(s):  
Guang An Zhang ◽  
Feng Jiang ◽  
Qi Zhou ◽  
Fu Fa Wu

The effect of liquid-die-forging pressure on the microstructure and mechanical properties of A390 sloping swash-plate forming was investigated. It was found that the microstructure and comprehensive mechanical properties of the alloy were effectively improved by the liquid-die-forging pressure applied on the A390 aluminum melt. With continuous increasing of the specific pressure, the grain size of primary silicon gradually decreased, the fraction of eutectic silicon obviously decreased, and its morphology was granular mainly. When the applied pressure was 181 MPa, the size of primary silicon was reduced to about 20 μm. When the casting temperature of the alloy was 820 °C, the mould preheating temperature was 240 °C and the forging casting specific pressure reached 181 MPa, the sloping swash plate without macro-defects, and with the internal compact-gain structure and excellent mechanical properties can be obtained.

2011 ◽  
Vol 194-196 ◽  
pp. 1296-1300
Author(s):  
Xiao Song Li ◽  
Wei Hu ◽  
An Hui Cai ◽  
Hua Chen ◽  
Yong Zhou

The effect of the Sr + RE complex modifications on microstructure and mechanical properties of Al-40 wt% Si alloy were investigated. The results show that Sr + RE complex modification not only on primary silicon and eutectic silicon with modification, but also on dendrite α significantly refine. When the addition of RE remain unchanged, with increasing of the addition of Sr, the primary silicon firstly changes from polygonal block or large plate to small block, then to large polygonal block, edge and corner passivations. The eutectic silicon firstly changes into a fine start with a long needle-like fibrous or branched further to a short stubby dendrite or worm-like, The eutectic silicon changes from needle to a fibrous sheet plus short rod, then to short rod end for the dense, or even granular. The dendrite α changes from highly developed dendritic to equiaxed and uniform distribution. In addition, with increasing of the addition of Sr, the mechanical properties has been significantly improved, tensile strength increased by 37%, elongation is more than double, the hardness increased by 21%. When the Sr addition is between 0.05 wt% and 0.077 wt%, the microstructure and mechanical properties are the best.


2016 ◽  
Vol 877 ◽  
pp. 27-32
Author(s):  
Hai Tao Zhang ◽  
Dong Tao Wang ◽  
Ke Qin ◽  
Xing Han ◽  
Bo Shao ◽  
...  

The effect of phosphorus on primary silicon, phosphorus and mischmetal (Ce-50La) modification on primary and eutectic silicon and cooling rate on microstructure of Al-25%Si are investigated. The results show that, with the addition of phosphorus, the size of primary silicon decreases from 93.6μm to 24.75μm. The morphology of primary silicon changes from irregular to polygonal. When Al-25%Si is modified by phosphorus and mischmetal, primary and eutectic silicon all change effectively. Addition of mischmetal on the basis of phosphorus modification have no influence to primary silicon, but it can make morphology of eutectic silicon change from lamellar to short rod-like when the content of mischmetal reaches 0.5%. The cooling rate curves show the change of temperature in different height of wedge-shaped mould. When cooling rate increases, microstructure of Al-25%Si refines, the size of primary silicon decrease to 22.7μm. The results obtained from mechanical testing demonstrate that the addition of mischmetal and increasing of cooling rate increase hardness value of Al-25%Si alloy.


2013 ◽  
Vol 652-654 ◽  
pp. 1049-1053 ◽  
Author(s):  
Bao Li ◽  
Zhi Feng Zhang ◽  
Zhi Gang Wang ◽  
Jun Xu ◽  
Qiang Zhu

In the present work, the effects of heat treatment on microstructure and mechanical properties of A390 alloy were investigated. The results show that the as-cast microstructure of A390 alloy mainly consists of primary silicon, α-Al, eutectic silicon and Al2Cu phase. The morphology of primary silicon is irregular polygonal block with sharp edges. Eutectic silicon exhibits a coarse plate-like and acicular morphology and the fishbone like Al2Cu phases are gathered at the grain boundary. During solution treatment, eutectic silicon undergoes fragmentation and spheroidization and T6 heat treatment has a profound effect on the dissolution of Cu and Mg. However, the morphology and size of primary silicon changes little. After the aging process, Al2Cu phases are precipited as lamellar morphology. As a result, the mechanical properties the heat treated A390 alloy increases significantly after T6 treatment.


2021 ◽  
Vol 3 (1) ◽  
pp. 15
Author(s):  
Truong An Nguyen ◽  
Manh Hung Le ◽  
Manh Tien Nguyen ◽  
Quoc Viet Pham

The goal of this work was to study the effects of cyclic close die forging on the microstructure and mechanical properties of Ti–5Al–3Mo–1.5V alloy, which was produced in Vietnam. The factors considered include the deformation temperature (Td), at 850 °C, 900 °C, and 950 °C, and the number of cycles performed while forging in closed die (n)— 3, 6, and 9 times. The responses measured were average grain diameter (dtb) and tensile stress (σb). The results indicate that the smallest average grain size of 1 μm could be obtained at Td = 900 °C, n = 9 times and the tensile stresses were enhanced. The experimental results we obtained also suggest that the microstructure of Ti–5Al–3Mo–1.5V alloy is accordant for superplastic deformation. The superplastic forming of this alloy can show maximum elongation of 1000% or more.


2010 ◽  
Vol 667-669 ◽  
pp. 457-461
Author(s):  
Wei Guo ◽  
Qu Dong Wang ◽  
Man Ping Liu ◽  
Tao Peng ◽  
Xin Tao Liu ◽  
...  

Cyclic channel die compression (CCDC) of AZ31-1.7 wt.% Si alloy was performed up to 5 passes at 623 K in order to investigate the microstructure and mechanical properties of compressed alloys. The results show that multi-pass CCDC is very effective to refine the matrix grain and Mg2Si phases. After the alloy is processed for 5 passes, the mean grain size decreases from 300 μm of as-cast to 8 μm. Both dendritic and Chinese script type Mg2Si phases break into small polygonal pieces and distribute uniformly in the matrix. The tensile strength increases prominently from 118 MPa to 216 MPa, whereas the hardness of alloy deformed 5 passes only increase by 8.4% compared with as-cast state.


2013 ◽  
Vol 750-752 ◽  
pp. 687-690 ◽  
Author(s):  
Su Zhang ◽  
Gang Yang ◽  
Jian Hong Yi ◽  
Hong Yan

Effects of the holding time and the stirring time on the microstructure and mechanical properties of A356 alloy modified by Sc are researched. According to the test results, most of the eutectic silicon phases have changed to the shape of creeping point, dispersed in the grain boundary of α (Al) phase while stirring 1 minute, in which case both the tensile strength and elongation reach the highest, resulting in the best modification effect. The results also indicate that microstructure and mechanical properties of the alloy reach are the best modification effect when the melt is held 15 minute. It can be known that the optimal stirring time is 1 minute and the optimal holding time is 15 minute in the experiment condition of the work.


2007 ◽  
Vol 560 ◽  
pp. 29-34 ◽  
Author(s):  
Emmanuel Gutiérrez C. ◽  
Armando Salinas-Rodríguez ◽  
Enrique Nava-Vázquez

The effects of heating rate and annealing temperature on the microstructure and mechanical properties of cold rolled Al-Si, low C non-oriented electrical steels are investigated using SEM metallography and uniaxial tensile tests. The experimental results show that short term annealing at temperatures up to 850 °C result in microstructures consisting of recrystallized ferrite grains with sizes similar to those observed in industrial semi-processed strips subjected to long term batch annealing treatments. Within the temperature range investigated, the grain size increases and the 0.2% offset yield strength decreases with increasing temperature. It was observed that the rate of change of grain size with increasing temperature increases when annealing is performed at temperatures greater than Ac1 (~870 °C). This effect is attributed to Fe3C dissolution and rapid C segregation to austenite for annealing temperatures within the ferrite+austenite phase field. This leads to faster ferrite growth and formation of pearlite when the steel is finally cooled to room temperature. The presence of pearlite at room temperature decreases the ductility of samples annealed at T > Ac1.


2017 ◽  
Vol 898 ◽  
pp. 124-130 ◽  
Author(s):  
Shu Min Xu ◽  
Xin Ying Teng ◽  
Xing Jing Ge ◽  
Jin Yang Zhang

In this paper, the microstructure and mechanical properties of the as-cast and heat treatment of Mg-Zn-Nd alloy was investigated. The alloy was manufactured by a conventional casting method, and then subjected to a heat treatment. The results showed that the microstructure of as-cast alloy was comprised of α-Mg matrix and Mg12Nd phase. With increase of Nd content, the grain size gradually decreased from 25.38 μm to 9.82 μm. The ultimate tensile strength and elongation at room temperature of the Mg94Zn2Nd4 alloy can be reached to 219.63 MPa and 5.31%. After heat treatment, part of the second phase dissolved into the magnesium matrix and the grain size became a little larger than that of the as-cast. The ultimate tensile strength was declined by about 2.5%, and the elongation was increased to 5.47%.


Sign in / Sign up

Export Citation Format

Share Document