Application of View Cast Software in Foundry Technique Designing

2012 ◽  
Vol 538-541 ◽  
pp. 572-575
Author(s):  
Bin Feng He

Taking large scale steel casting for example; View Cast software was introduced to the designing process of the large scale steel casting technique. Solidification results show that the annular pop gate is beneficial to the casting. The side risers are used but it cannot eliminate the shrinkages because of the limited feeding distance according to the simulation results. So a top riser replaced it and some chills are used in the necessary regions. The results show that the new feeding system can help to progressive solidification and the shrinkages are eliminated. The temperature distribution is very clearly and the solidified part of casting is transparent which improved the visible effect and made it easy to read. People can estimate the shrinkage position easily.

2018 ◽  
Vol 11 (3) ◽  
pp. 297-301
Author(s):  
Majid Karimipour ◽  
Iman Aryanian

AbstractA dual-polarized dual-layer wideband microstrip antenna is presented. Dual orthogonal linear polarization and enhanced isolation between two ports are achieved by employing two radiating patches perpendicular to each other and printed on two separate substrates. Broadband behavior of the antenna is realized by using two wideband double-sided printed strip dipole and angular ring as radiating patches along with wideband baluns as feeding system. The patches are connected to baluns with two separate twin-lead transmission lines. Moreover, to improve the impedance bandwidth of the strip dipole significantly, a diamond-shape parasitic patch is artily incorporated into the top side of the upper layer of the antenna. The proposed antenna can easily be employed in large-scale arrays thanks to the feeding system of the patches. A prototype is fabricated to verify the simulation results where the measurement results show the −10 dB impedance bandwidths of 40% (4.3–6.5 GHz) and 43% (4.2–6.5 GHz) at port #1 and port #2, respectively. Besides, the isolation between two ports and the radiation gain are obtained around 35 dB and 9 dBi, respectively, which are useful for WLAN applications.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2760
Author(s):  
Ruiye Li ◽  
Peng Cheng ◽  
Hai Lan ◽  
Weili Li ◽  
David Gerada ◽  
...  

Within large turboalternators, the excessive local temperatures and spatially distributed temperature differences can accelerate the deterioration of electrical insulation as well as lead to deformation of components, which may cause major machine malfunctions. In order to homogenise the stator axial temperature distribution whilst reducing the maximum stator temperature, this paper presents a novel non-uniform radial ventilation ducts design methodology. To reduce the huge computational costs resulting from the large-scale model, the stator is decomposed into several single ventilation duct subsystems (SVDSs) along the axial direction, with each SVDS connected in series with the medium of the air gap flow rate. The calculation of electromagnetic and thermal performances within SVDS are completed by finite element method (FEM) and computational fluid dynamics (CFD), respectively. To improve the optimization efficiency, the radial basis function neural network (RBFNN) model is employed to approximate the finite element analysis, while the novel isometric sampling method (ISM) is designed to trade off the cost and accuracy of the process. It is found that the proposed methodology can provide optimal design schemes of SVDS with uniform axial temperature distribution, and the needed computation cost is markedly reduced. Finally, results based on a 15 MW turboalternator show that the peak temperature can be reduced by 7.3 ∘C (6.4%). The proposed methodology can be applied for the design and optimisation of electromagnetic-thermal coupling of other electrical machines with long axial dimensions.


2021 ◽  
Vol 11 (8) ◽  
pp. 3623
Author(s):  
Omar Said ◽  
Amr Tolba

Employment of the Internet of Things (IoT) technology in the healthcare field can contribute to recruiting heterogeneous medical devices and creating smart cooperation between them. This cooperation leads to an increase in the efficiency of the entire medical system, thus accelerating the diagnosis and curing of patients, in general, and rescuing critical cases in particular. In this paper, a large-scale IoT-enabled healthcare architecture is proposed. To achieve a wide range of communication between healthcare devices, not only are Internet coverage tools utilized but also satellites and high-altitude platforms (HAPs). In addition, the clustering idea is applied in the proposed architecture to facilitate its management. Moreover, healthcare data are prioritized into several levels of importance. Finally, NS3 is used to measure the performance of the proposed IoT-enabled healthcare architecture. The performance metrics are delay, energy consumption, packet loss, coverage tool usage, throughput, percentage of served users, and percentage of each exchanged data type. The simulation results demonstrate that the proposed IoT-enabled healthcare architecture outperforms the traditional healthcare architecture.


2019 ◽  
Vol 11 (16) ◽  
pp. 4424 ◽  
Author(s):  
Chunning Na ◽  
Huan Pan ◽  
Yuhong Zhu ◽  
Jiahai Yuan ◽  
Lixia Ding ◽  
...  

At present time, China’s power systems face significant challenges in integrating large-scale renewable energy and reducing the curtailed renewable energy. In order to avoid the curtailment of renewable energy, the power systems need significant flexibility requirements in China. In regions where coal is still heavily relied upon for generating electricity, the flexible operations of coal power units will be the most feasible option to face these challenges. The study first focused on the reasons why the flexible operation of existing coal power units would potentially promote the integration of renewable energy in China and then reviewed the impacts on the performance levels of the units. A simple flexibility operation model was constructed to estimate the integration potential with the existing coal power units under several different scenarios. This study’s simulation results revealed that the existing retrofitted coal power units could provide flexibility in the promotion of the integration of renewable energy in a certain extent. However, the integration potential increment of 20% of the rated power for the coal power units was found to be lower than that of 30% of the rated power. Therefore, by considering the performance impacts of the coal power units with low performances in load operations, it was considered to not be economical for those units to operate at lower than 30% of the rated power. It was believed that once the capacity share of the renewable energy had achieved a continuously growing trend, the existing coal power units would fail to meet the flexibility requirements. Therefore, it was recommended in this study that other flexible resources should be deployed in the power systems for the purpose of reducing the curtailment of renewable energy. Furthermore, based on this study’s obtained evidence, in order to realize a power system with high proportions of renewable energy, China should strive to establish a power system with adequate flexible resources in the future.


Clean Energy ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 196-207
Author(s):  
Shoichi Sato ◽  
Yasuhiro Noro

Abstract The introduction of large-scale renewable energy requires a control system that can operate multiple distributed inverters in a stable way. This study proposes an inverter control method that uses information corresponding to the inertia of the synchronous generator to coordinate the operation of battery energy storage systems. Simulation results for a system with multiple inverters applying the control method are presented. Various faults such as line-to-line short circuits and three-phase line-to-ground faults were simulated. Two fault points with different characteristics were compared. The voltage, frequency and active power quickly returned to their steady-state values after the fault was eliminated. From the obtained simulation results, it was verified that our control method can be operated stably against various faults.


2021 ◽  
Author(s):  
Rohit Chhiber ◽  
Arcadi Usmanov ◽  
William Matthaeus ◽  
Melvyn Goldstein ◽  
Riddhi Bandyopadhyay

<div>Simulation results from a global <span>magnetohydrodynamic</span> model of the solar corona and the solar wind are compared with Parker Solar <span>Probe's</span> (<span>PSP</span>) observations during its first several orbits. The fully three-dimensional model (<span>Usmanov</span> <span>et</span> <span>al</span>., 2018, <span>ApJ</span>, 865, 25) is based on Reynolds-averaged mean-flow equations coupled with turbulence transport equations. The model accounts for effects of electron heat conduction, Coulomb collisions, Reynolds stresses, and heating of protons and electrons via nonlinear turbulent cascade. Turbulence transport equations for turbulence energy, cross <span>helicity</span>, and correlation length are solved concurrently with the mean-flow equations. We specify boundary conditions at the coronal base using solar synoptic <span>magnetograms</span> and calculate plasma, magnetic field, and turbulence parameters along the <span>PSP</span> trajectory. We also accumulate data from all orbits considered, to obtain the trends observed as a function of heliocentric distance. Comparison of simulation results with <span>PSP</span> data show general agreement. Finally, we generate synthetic fluctuations constrained by the local rms turbulence amplitude given by the model, and compare properties of this synthetic turbulence with PSP observations.</div>


2015 ◽  
Vol 13 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Kun Lei ◽  
Hongfang Ma ◽  
Haitao Zhang ◽  
Weiyong Ying ◽  
Dingye Fang

Abstract The heat conduction performance of the methanol synthesis reactor is significant for the development of large-scale methanol production. The present work has measured the temperature distribution in the fixed bed at air volumetric flow rate 2.4–7 m3 · h−1, inlet air temperature 160–200°C and heating tube temperature 210–270°C. The effective radial thermal conductivity and effective wall heat transfer coefficient were derived based on the steady-state measurements and the two-dimensional heat transfer model. A correlation was proposed based on the experimental data, which related well the Nusselt number and the effective radial thermal conductivity to the particle Reynolds number ranging from 59.2 to 175.8. The heat transfer model combined with the correlation was used to calculate the temperature profiles. A comparison with the predicated temperature and the measurements was illustrated and the results showed that the predication agreed very well with the experimental results. All the absolute values of the relative errors were less than 10%, and the model was verified by experiments. Comparing the correlations of both this work with previously published showed that there are considerable discrepancies among them due to different experimental conditions. The influence of the particle Reynolds number on the temperature distribution inside the bed was also discussed and it was shown that improving particle Reynolds number contributed to enhance heat transfer in the fixed bed.


2010 ◽  
Vol 42 (1) ◽  
pp. 99-124 ◽  
Author(s):  
A.K. Shukla ◽  
A. Mondal ◽  
A. Upadhyaya

The present study compares the temperature distribution within cylindrical samples heated in microwave furnace with those achieved in radiatively-heated (conventional) furnace. Using a two-dimensional finite difference approach the thermal profiles were simulated for cylinders of varying radii (0.65, 6.5, and 65 cm) and physical properties. The influence of susceptor-assisted microwave heating was also modeled for the same. The simulation results reveal differences in the heating behavior of samples in microwaves. The efficacy of microwave heating depends on the sample size and its thermal conductivity.


Author(s):  
Ying Duan ◽  
Xiaogen Yi ◽  
Qinglong Xie ◽  
Zhengai Weng ◽  
Peng Yuan ◽  
...  

Microwave reactors equipped with microwave absorbent as high-temperature bed are effective for the pyrolysis reactions. The uniformity and stability of temperature distribution on the microwave absorbent bed surface is important to the microwave pyrolysis reactor especially in the large-scale reactor. Herein, the temperature distribution on the SiC microwave absorbent bed in a large-scale microwave pyrolysis reactor without feeding was examined by both infrared thermography and simulation. Considering the economics of using multiple low-power magnetrons in large-scale reactor, the effect of the working magnetrons location on the heating rate of bed surface and the COV of temperature distribution was investigated. The results showed that more uniform and stable temperature distribution of bed surface in the large-scale reactor was obtained when the magnetrons located at the bottom of the reactor were in use. This study provides guidance for the scale-up of microwave-assisted pyrolysis reactor with multiple low-power magnetrons.


2017 ◽  
Author(s):  
Cherry May R. Mateo ◽  
Dai Yamazaki ◽  
Hyungjun Kim ◽  
Adisorn Champathong ◽  
Jai Vaze ◽  
...  

Abstract. Global-scale River Models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representation of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash–Sutcliffe Efficiency coefficient decreased by more than 35 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions in finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings are universal and can be extended to global-scale simulations. These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.


Sign in / Sign up

Export Citation Format

Share Document