microwave reactors
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 2)

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4190
Author(s):  
Simona Popa ◽  
Andra Tamas ◽  
Vasile Simulescu ◽  
Dorin Jurcau ◽  
Sorina Boran ◽  
...  

Fatty acids esters have a wide application as bioplasticizers and biolubricants in different industries, obtained mainly in classic batch reactors, through an equilibrium complex reaction, that involves high temperatures, long reaction times, vigorously stirring, and much energy consumption. To overcome these shortcomings, we synthesized a series of fatty acid esters (soybean oil fatty acids being the acid components with various hydroxyl compounds) through novel low energy consumption technologies using a bubble column reactor, a microwave field reactor and for comparison meaning, a classic batch reactor. The obtained bioesters physicochemical properties were similar to one another, a good concordance among their rheological properties was obtained, but the energetic consumption is lower when using the bubble column or the microwave reactors instead of the classical batch reactor.


Author(s):  
Pengcheng Zou ◽  
Guangyuan Jin ◽  
Guoyu Nie ◽  
Chunfang Song ◽  
Zhengwei Cui

Abstract Due to the exhaustion of fossil fuels and environmental degradation, biodiesel has attracted much attention as a new energy source. Currently, microwave reactors are used extensively for producing biodiesel. However, nonuniform heating of producing biodiesel in microwave reactors is a major problem. In order to solve the problem, a microwave reactor with an interlayer which can obviously improve the uniformity of microwave heating was designed. In this work, the heating efficiency and heating uniformity of the reactor were discussed from two aspects of waveguide position and interlayer thickness by means of multi-physical coupling calculation. According to the calculation results, the optimization model of a microwave reactor with an interlayer was obtained. Then, based on the above optimization model of a microwave reactor with an interlayer, a stirrer that can improve the heat transfer of the fluid material was introduced. The Maxwell equation, heat transfer equation and flow equation were coupled by multi-physical field simulation method to explore the influence of different factors of stirrer on power consumption and heating uniformity. Through response surface analysis, it was found that the primary and secondary order of stirring factors affecting microwave heating uniformity was stirring speed > impeller diameter > bottom clearance, and there was an interaction between different factors. From the two aspects of stirring power consumption and heating uniformity, the best stirring effect was obtained.


Author(s):  
Ying Duan ◽  
Xiaogen Yi ◽  
Qinglong Xie ◽  
Zhengai Weng ◽  
Peng Yuan ◽  
...  

Microwave reactors equipped with microwave absorbent as high-temperature bed are effective for the pyrolysis reactions. The uniformity and stability of temperature distribution on the microwave absorbent bed surface is important to the microwave pyrolysis reactor especially in the large-scale reactor. Herein, the temperature distribution on the SiC microwave absorbent bed in a large-scale microwave pyrolysis reactor without feeding was examined by both infrared thermography and simulation. Considering the economics of using multiple low-power magnetrons in large-scale reactor, the effect of the working magnetrons location on the heating rate of bed surface and the COV of temperature distribution was investigated. The results showed that more uniform and stable temperature distribution of bed surface in the large-scale reactor was obtained when the magnetrons located at the bottom of the reactor were in use. This study provides guidance for the scale-up of microwave-assisted pyrolysis reactor with multiple low-power magnetrons.


Synlett ◽  
2020 ◽  
Vol 31 (16) ◽  
pp. 1608-1612
Author(s):  
J. Craig Ruble ◽  
Christopher J. Maddocks ◽  
Sivakumar V. Aathimanikandan ◽  
Jeffery Richardson

A convenient procedure for conducting small-scale carbonylations of aryl or benzyl halides in a microwave reactor by using quinolin-8-yl formate is described. The resulting 8-acyloxyquinolines were shown to be more reactive than phenyl esters in acyl-transfer reactions, and their utility for the production of esters and amides was demonstrated.


Author(s):  
Suhail Abdullah ◽  
Kok Yeow You ◽  
Cheong Yew Chong ◽  
Mohamed Sultan Mohamed Ali

Mono-mode microwave reactors are usually used to heat substances, especially food. This is because heating using a microwave reactor can sustain the flavor, color, and nutrition of the food. Furthermore, this heating technique is cost-effective and time-saving compared to a conventional heating method. The mono-mode reactor is able to determine the absorption of microwave power accurately on the heated substance versus a multimode reactor. In this chapter, a simple and precise mono-mode microwave reactor is designed and developed especially for research laboratories. The advantage of this reactor is to provide a more accurate calibration process, in order to improve the optimum energy use in the heating process, as well as the temperature of the specimen. The reactor can generate output power from 30 watts to 1500 watts, operating at 2.45±0.03 GHz and capable of accommodating a specimen volume of 780 cm3. Pure water is used as a heated specimen to demonstrate the performance and efficiency of this reactor.


2020 ◽  
Vol 153 ◽  
pp. 677-683 ◽  
Author(s):  
Farnaz Eghbal Sarabi ◽  
Meisam Ghorbani ◽  
Andrzej Stankiewicz ◽  
Hakan Nigar

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Hyosic Jung ◽  
Christopher W. Bielawski

Abstract Carbocatalysts, which are catalytically-active materials derived from carbon-rich sources, are attractive alternatives to metal-based analogs. Graphene oxide is a prototypical example and has been successfully employed in a broad range of synthetic transformations. However, its use is accompanied by a number of practical and fundamental drawbacks. For example, graphene oxide undergoes explosive decomposition when subjected to elevated temperatures or microwaves. We found that asphaltene oxide, an oxidized collection of polycyclic aromatic hydrocarbons that are often discarded from petroleum refining processes, effectively overcomes the drawbacks of using graphene oxide in synthetic chemistry and constitutes a new class of carbocatalysts. Here we show that asphaltene oxide may be used to promote a broad range of transformations, including Claisen-Schmidt condensations, C–C cross-couplings, and Fischer indole syntheses, as well as chemical reactions which benefit from the use of microwave reactors.


Crystals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 379 ◽  
Author(s):  
Sylwia Dąbrowska ◽  
Tadeusz Chudoba ◽  
Jacek Wojnarowicz ◽  
Witold Łojkowski

Microwave energy has been in use for many applications for more than 50 years, from communication, food processing, and wood drying to chemical reactions and medical therapy. The areas, where microwave technology is applied, include drying, calcination, decomposition, powder synthesis, sintering, and chemical process control. Before the year 2000, microwaves were used to produce ceramics, semiconductors, polymers, and inorganic materials; in next years, some new attempts were made as well. Nowadays, it has been found that microwave sintering can also be applied to sintered powder and ceramics and is more effective than conventional sintering. Particularly interesting is its use for the synthesis of nanomaterials. This review identifies the main sources of microwave generation, the delivery mechanisms of microwave energy, and the typical designs and configurations of microwave devices, as well as the measurement and construction material problems related to microwave technology. We focus our attention on the configurations, materials, optimized geometries, and solvents used for microwave devices, providing examples of products, especially nanoparticles and other nanomaterials. The identified microwave devices are divided into four groups, depending on the scale, the maximum pressure developed, the highest temperature for sintering, or other special multi-functions. The challenges of using microwave energy for the synthesis of nanopowders have been identified as well. The desirable characteristics of microwave reactors in the synthesis of nanostructures, as well as their superiority over conventional synthetic methods, have been presented. We have also provided a review of the commercial and self-designed microwave reactors, digestors, and sintering furnaces for technology for synthesis of nanomaterials and other industries.


Sign in / Sign up

Export Citation Format

Share Document