Measurement and Correlation of Solubilities and Surface Tension of Caffeine in Water

2012 ◽  
Vol 560-561 ◽  
pp. 28-34
Author(s):  
Zhao You Zhu ◽  
Da Wei Zhang ◽  
Ying Long Wang

The solubility of caffeine in water between 323.15 and 353.15 K was measured using the balance method. The solubility trend was modeled by use of the modified Apelblat equation and Yaws equation. The calculated solubility values according to the two empirical equations compare favorably with the experimental data. Besides, the relationship between supersaturated ratio and induction time was studied with the method of laser, basing on which, the surface tension of caffeine at 283.15 K, 293.15 K and 298.15 K in water was calculated.

1961 ◽  
Vol 5 ◽  
pp. 153-160 ◽  
Author(s):  
J. Leroux

AbstractA brief description of the theoretical approach of this new method is given. The main purpose of the method is to correlate in a more logical order not only the data yielding the two laws relating mass-absorption coefficient to wavelength and to atomic number, respectively, but also to delineate, within two discontinuities, the relationship existing between each value and the other ones taken as a whole. The empirical equation relating μ to λ is μ = Cλn. A table of complete values for the constant C and die power n to be assigned in the equation is given for finding the values of mass-absorption coefficients above unity for all elements (except hydrogen) and for all wavelengths between 0.17837 and 10 A. It is believed that until a complete set of experimental data obtained with modern equipment is available, this proposed method fills the enormous gaps between actual compiled values.


2019 ◽  
Author(s):  
Liwei Cao ◽  
Danilo Russo ◽  
Vassilios S. Vassiliadis ◽  
Alexei Lapkin

<p>A mixed-integer nonlinear programming (MINLP) formulation for symbolic regression was proposed to identify physical models from noisy experimental data. The formulation was tested using numerical models and was found to be more efficient than the previous literature example with respect to the number of predictor variables and training data points. The globally optimal search was extended to identify physical models and to cope with noise in the experimental data predictor variable. The methodology was coupled with the collection of experimental data in an automated fashion, and was proven to be successful in identifying the correct physical models describing the relationship between the shear stress and shear rate for both Newtonian and non-Newtonian fluids, and simple kinetic laws of reactions. Future work will focus on addressing the limitations of the formulation presented in this work, by extending it to be able to address larger complex physical models.</p><p><br></p>


2010 ◽  
Vol 156-157 ◽  
pp. 1702-1707
Author(s):  
Xiang Wen Cheng ◽  
Jinchao Liu ◽  
Qi Zhi Ding ◽  
Li Ming Song ◽  
Zhan Lin Wang

How to predict the relationship among particle size and among product size, to establish the relationship between the granularity and working parameters in the process of grinding and to determine the optimum operating parameters. With proposing BS squeeze crush model by L. Bass and the idea of roll surface division as the material uneven extrusion force are adopted. Based on field experiments the experimental data is analyzed, the select function and the breakage functions are fitted with MATLAB software, and obtaining their model. The comminution model is determined by the roller division. We obtain the model parameter through the experimental data. Through model analysis shows: the relationship between particle breakage and energy absorption, namely the smaller size of the same power, the lower broken; the breakage diminishes with the decrease of particle size ratio and it will be tending to a small constant when the smaller particle size ratio. The breakage functions rapidly decrease within ratio of between 0.2-0.7. This shows: the energy consumption will rapidly increase when the particle size of less than 0.2 in broken; the selection diminish with the decrease of particle size. Pressure (8-9MPa) should be the most appropriate value.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ilyas Al-Kindi ◽  
Tayfun Babadagli

AbstractThe thermodynamics of fluids in confined (capillary) media is different from the bulk conditions due to the effects of the surface tension, wettability, and pore radius as described by the classical Kelvin equation. This study provides experimental data showing the deviation of propane vapour pressures in capillary media from the bulk conditions. Comparisons were also made with the vapour pressures calculated by the Peng–Robinson equation-of-state (PR-EOS). While the propane vapour pressures measured using synthetic capillary medium models (Hele–Shaw cells and microfluidic chips) were comparable with those measured at bulk conditions, the measured vapour pressures in the rock samples (sandstone, limestone, tight sandstone, and shale) were 15% (on average) less than those modelled by PR-EOS.


Author(s):  
Rami Benkreif ◽  
Fatima Zohra Brahmia ◽  
Csilla Csiha

AbstractSurface tension of solid wood surfaces affects the wettability and thus the adhesion of various adhesives and wood coatings. By measuring the contact angle of the wood, the surface tension can be calculated based on the Young-Dupré equation. Several publications have reported on contact angle measured with different test liquids, under different conditions. Results can only be compared if the test conditions are similar. While the roles of the drop volume, image shooting time etc., are widely recognized, the role of the wood surface moisture content (MC) is not evaluated in detail. In this study, the effect of wood moisture content on contact angle values, measured with distilled water and diiodomethane, on sanded birch (Betula pendula) surfaces was investigated, in order to find the relationship between them. With increasing MC from approximately 6% to 30%, increasing contact angle (decreasing surface tension) values were measured according to a logarithmic function. The function makes possible the calculation of contact angles that correspond to different MCs.


1990 ◽  
Vol 69 (1) ◽  
pp. 74-85 ◽  
Author(s):  
D. P. Gaver ◽  
R. W. Samsel ◽  
J. Solway

We studied airway opening in a benchtop model intended to mimic bronchial walls held in apposition by airway lining fluid. We measured the relationship between the airway opening velocity (U) and the applied airway opening pressure in thin-walled polyethylene tubes of different radii (R) using lining fluids of different surface tensions (gamma) and viscosities (mu). Axial wall tension (T) was applied to modify the apparent wall compliance characteristics, and the lining film thickness (H) was varied. Increasing mu or gamma or decreasing R or T led to an increase in the airway opening pressures. The effect of H depended on T: when T was small, opening pressures increased slightly as H was decreased; when T was large, opening pressure was independent of H. Using dimensional analysis, we found that the relative importance of viscous and surface tension forces depends on the capillary number (Ca = microU/gamma). When Ca is small, the opening pressure is approximately 8 gamma/R and acts as an apparent “yield pressure” that must be exceeded before airway opening can begin. When Ca is large (Ca greater than 0.5), viscous forces add appreciably to the overall opening pressures. Based on these results, predictions of airway opening times suggest that airway closure can persist through a considerable portion of inspiration when lining fluid viscosity or surface tension are elevated.


2011 ◽  
Vol 321 ◽  
pp. 192-195
Author(s):  
Qing Bin Yang ◽  
Xiao Yang

In order to analysis the relationship between the strength and elongation and the blended ratio of SPF/Cotton blended yarn, the strength and elongation of SPF /cotton blended yarn with different blended ratio were measured and compared with the simple model. The results indicated that For the SPF/cotton blended yarn, the difference between the experimental data and the model value is remarkable because of the high cohesion of the cotton fibers.


2021 ◽  
Vol 1022 ◽  
pp. 194-202
Author(s):  
R.Kh. Dadashev ◽  
R.A. Kutuev

The experimental study results of the melts concentration dependence of the surface tension of the four-component indium-tin-lead-bismuth system and its constituent binary systems of indium-tin, indium-lead, indium-bismuth, tin-lead, tin-bismuth, lead-bismuth are presented in the paper. It is shown that the concentration dependence of the melts surface tension of the In-Sn-Pb-Bi four-component system can be predicted from the data on ST (surface tension) values of lateral binary systems. Features in the ST isotherms in the form of a minimum are observed only in the indium-tin lateral system from all lateral binaries. A distinctive feature of the detected minimum is that the minimum depth slightly exceeds the experimental error. Therefore, in addition to the fact that the area of average compositions was studied more thoroughly, we carried out the surface tension measurements by two independent methods. The experimental data obtained by both methods coincide within the experimental error and indicate the extremum availability on ST isotherms. Thus, ST experimental studies by two independent methods confirmed the presence of a flat minimum on ST isotherms of the indium-tin binary system increasing the reliability of the obtained data. The obtained outcomes and their comparison with experimental data have shown that the considered models for predicting surface properties based on data due to similar properties of lateral binary systems adequately reflect the experimental dependences. However, the prediction model based on Kohler's method of excess values describes the experimental curves more accurately.


2015 ◽  
Vol 713-715 ◽  
pp. 660-663
Author(s):  
Jia Min Chen

First, Anti-balance method is used to build the model of q2,q3,q4 to figure out the Function expression of q2+q3+q4 .when q2+q3+q4 gets the minimum, the corresponded to the excess air ratio is the best excess air ratio. The excess air ratio is related to the load of boiler, so the function image describing the relationship between q2+q3+q4 and excess air ratio under the different load of 192.3MW, 215.8MW, 245.3MW and 298MW are made to get the best excess air ratio. Second, based on the model before, new variables q5 and q6 are added to complete the function formula of the efficiency and the excess air ratio, and four function image will be drew to show the tends. Finally, based on the conclusions above, smoke vents oxygen content can take the place of excess air ratio to achieve the purpose of monitoring the boiler in real time.


Sign in / Sign up

Export Citation Format

Share Document