A PCR-DGGE Approach to Evaluate the Influence of Environment Materials for Civil Engineering-Different Carbon Sources on a Catching Bed Biofilm Reactor in Start-up Phase

2012 ◽  
Vol 568 ◽  
pp. 260-264
Author(s):  
Yan Zhang ◽  
Li Li Wang ◽  
Zheng Yang Yang ◽  
Xu Ying Zhao ◽  
Huan Guang Liu ◽  
...  

In this study, the effect of environment materials for civil engineering was investigated through two sets of parallel reactors with sodium acetate and starch as carbon source separately. The reactors were started up by two stages, including biofilm formation stage and biofilm domestication stage. In biofilm domestication stage, the average removal efficiencies of COD were 88.84% and 88.78% respectively. NH4+-N removal efficiencies were reached at 99.28% and 91.90%. Total nitrogen(TN)removal efficiencies were 45.25% and 45.45%. By PCR-DGGE, it was found that there were high similarities between biofilm and suspension in the reactors. Different types of carbon sources enriched different types of microorganisms. The study can provide references for studying simultaneous nitrification and denitrification(SND)and optimizing carbon sources.

1999 ◽  
Vol 40 (8) ◽  
pp. 145-151 ◽  
Author(s):  
Liliana Borzacconi ◽  
Gisela Ottonello ◽  
Elena Castelló ◽  
Heber Pelaez ◽  
Augusto Gazzola ◽  
...  

The performance of a bench scale upflow sludge bed (USB) denitrifying reactor was evaluated in order to integrate it into a C and N removal system for Sanitary Landfill Leachate. The raw leachate used presented COD and NH4-N average values of 30000 mg/l and 1000 mg/l, respectively. The complete system comprises in addition an UASB reactor and a nitrifying RBC. A portion of the aerobic reactor effluent was recycled into the denitrification stage and some raw leachate was also added as an additional C source. In order to obtain operating parameters the denitrifying reactor was operated alone. Sludge from an aerobic reactor (RBC) treating raw leachate was used as inoculum. Shortly after the start up, good granulation of the sludge bed was observed. Using raw leachate and UASB outlet as carbon sources with COD/NO3-N ratios of 4 and 12, respectively, denitrification efficiencies of about 90% were reached. A sludge yield of 0.16 gVSS/gCODremoved was obtained operating with raw leachate. For the anoxic reactor operating in the complete system, denitrification efficiencies of 90% were also achieved. A nitrogen gas recycle was a successful way to avoid frequently observed sludge bed rising problems.


2012 ◽  
Vol 568 ◽  
pp. 89-93
Author(s):  
Yan Zhang ◽  
Zheng Yang Yang ◽  
Li Li Wang ◽  
Xu Ying Zhao ◽  
Huan Guang Liu ◽  
...  

In this study, effect of C/N ratio on denitrification were investigated using four sets of parallel catching bed reactors, which were using acrylic resin fiber (ARF) as carrier materials. The results indicate that this process which was used in wastewater treatment of civil engineering can get better COD and nitrogen removing performance. NH4+-N removal rate reduced with the increasing of C/N ratio, and the average removal rate of COD and the total nitrogen (TN) increased when C/N ratio is increased. When C/N ratio exceeded 12, TN removal rate has no obvious growing. Meanwhile, fluorescent in situ hybridization (FISH) analysis indicated that the biomass in the biofilm were much richer than which in the suspension, and the ammonia oxidizing bacteria have a easy access to be dominant bacterial community in lower C/N ratio.


2013 ◽  
Vol 67 (12) ◽  
pp. 2677-2684 ◽  
Author(s):  
M. Christensson ◽  
S. Ekström ◽  
A. Andersson Chan ◽  
E. Le Vaillant ◽  
R. Lemaire

ANITA™ Mox is a new one-stage deammonification Moving-Bed Biofilm Reactor (MBBR) developed for partial nitrification to nitrite and autotrophic N-removal from N-rich effluents. This deammonification process offers many advantages such as dramatically reduced oxygen requirements, no chemical oxygen demand requirement, lower sludge production, no pre-treatment or requirement of chemicals and thereby being an energy and cost efficient nitrogen removal process. An innovative seeding strategy, the ‘BioFarm concept’, has been developed in order to decrease the start-up time of new ANITA Mox installations. New ANITA Mox installations are started with typically 3–15% of the added carriers being from the ‘BioFarm’, with already established anammox biofilm, the rest being new carriers. The first ANITA Mox plant, started up in 2010 at Sjölunda wastewater treatment plant (WWTP) in Malmö, Sweden, proved this seeding concept, reaching an ammonium removal rate of 1.2 kgN/m3 d and approximately 90% ammonia removal within 4 months from start-up. This first ANITA Mox plant is also the BioFarm used for forthcoming installations. Typical features of this first installation were low energy consumption, 1.5 kW/NH4-N-removed, low N2O emissions, <1% of the reduced nitrogen and a very stable and robust process towards variations in loads and process conditions. The second ANITA Mox plant, started up at Sundets WWTP in Växjö, Sweden, reached full capacity with more than 90% ammonia removal within 2 months from start-up. By applying a nitrogen loading strategy to the reactor that matches the capacity of the seeding carriers, more than 80% nitrogen removal could be obtained throughout the start-up period.


2010 ◽  
Vol 61 (12) ◽  
pp. 3017-3025 ◽  
Author(s):  
X. L. Shi ◽  
X. B. Hu ◽  
Z. Wang ◽  
L. L. Ding ◽  
H. Q. Ren

A laboratory-scale anaerobic-anoxic-aerobic-moving bed biofilm reactor (A1-A2-O-MBBR) system was undertaken to treat coke plant wastewaters from two different factories (wastewater A and B). Wastewater B had higher BOD5/COD ratio and COD/TN ratio than wastewater A. The effects of reflux ratios on COD, TN and NH3-N removals were studied. Results indicated that, with the reflux ratio increased from 2 to 5, COD removals of wastewater A and wastewater B increased from 57.4% to 72.6% and 78.2% to 88.6%, respectively. Meanwhile, TN removals were also increased accompanying reflux ratio rise, from 53.1% to 74.4% for wastewater A and 64.2% to 83.5% for wastewater B. At the same reflux ratio, compared with wastewater A, higher COD and TN removal efficiencies were observed in wastewater B, which had higher BOD5/COD and COD/TN ratio. Reflux ratio had no significant influence on NH3-N removal; 99.0% of the overall NH3-N removal efficiency was achieved by the system for both coke plant wastewaters at any tested reflux ratio. MBBR was effective in NH3-N removal, and about 95% of the NH3-N was removed in the MBBR.


2013 ◽  
Vol 807-809 ◽  
pp. 1083-1086 ◽  
Author(s):  
Peng Xu ◽  
Hong Jun Han ◽  
Sheng Yong Jia ◽  
Bao Lin Hou ◽  
Qian Zhao

Using hydrolytic acidification-AO process treating coal gasification wastewater, the COD, total phenols in the effluent and the removal efficiencies were studied. The start-up period was separated to two stages with influent COD concentration of 1500 and 2500mg/L. After 59 days operation, the COD and total phenols removal efficiencies were 80.3% and 72.9%, respectively. The COD and total phenols increased to 925.4 and 238.7mg/L when the HRT was reduced to 6h with the corresponding concentrations of influent were 2512.9 and 493.4mg/L. When the HRT in hydrolytic acidification was reduced to 100%, the removal of total phenols dropped from 75.4% to 57.6%. The bigger circle ratio of 500% didn't have obviously effect on total phenols removal of the process.


2012 ◽  
Vol 65 (3) ◽  
pp. 484-489
Author(s):  
Lee Chew Koh ◽  
Haiyang Zhang ◽  
Thi Thai Ha Nguyen ◽  
Say Leong Ong

The performance of an ultra-compact biofilm reactor (UCBR) treating domestic wastewater (DWW) collected from a local water reclamation plant; and gradually shifting to a mono-type carbon source synthetic wastewater (SWW) combined with DDW (CWW) and finally SWW; was investigated in this study. The total COD concentrations of influent DWW and CWW/SWW were 413.6 ± 80.8 mg/L and 454.9 ± 51.3 mg/L, respectively. The UCBR was able to achieve average total COD removal efficiencies of 70 ± 10% and 80 ± 4% for DWW and SWW respectively. The total COD concentrations of the effluent of DWW and CWW/SWW were 122.5 ± 44.4 mg/L and 89.7 ± 10.3 mg/L, respectively. These observations suggested that heterotrophs in the UCBR system were able to better assimilate and remove carbon of mono-type SWW compared to diverse carbon sources such as DWW; although the influent soluble COD concentrations of the SWW were higher than those of the DWW. However, the effluent NH4+-N concentrations for both types of wastewater were rather similar, <3.0 mg/L; although the influent NH4+-N concentrations of the DWW were 1.5 times those of the SWW.


2008 ◽  
Vol 58 (9) ◽  
pp. 1707-1713 ◽  
Author(s):  
O. González ◽  
M. Esplugas ◽  
C. Sans ◽  
S. Esplugas

A combined strategy of a photo-Fenton pretreatment followed by a Sequencing Batch Biofilm Reactor (SBBR) was evaluated for total C and N removal from a synthetic wastewater containing 200 mg L−1 of the antibiotic Sulfamethoxazole (SMX). Photo-Fenton reaction was performed with two different H2O2 concentrations (300 and 400 mg L−1) and 10 mg L−1 of Fe2 + . The pre-treated effluents with the antibiotic intermediates as sole carbon source, together with a nutrients solution, were used as feed for the biological reactor. The SBBR was operated under aerobic conditions to mineralize the organic carbon and the hydraulic retention time (HRT) was optimized down to 8 hours. Then, an anoxic denitrification stage of 24 hours of HRT was added right after the aerobic stage of the same duration in order to remove the NO3− generated along the chemical–biological treatment. TOC, COD and SMX concentrations together with O2 uptake rate (OUR) profiles were monitored in purpose of assessing the performance of the system. NO3−, NH4+ and total N concentrations were analyzed to find out the fate of N contained in the initial SMX molecule. A start up strategy resulted in the correct formation of a biofilm over the volcanic support. The total TOC removals achieved with the combination of the chemical and the biological processes were 75.7 and 87.7% for the low and the high H2O2 concentration pretreatments respectively. Practically all N present in the SMX solution was eliminated in the SBBR when the aerobic–anoxic strategy was used.


2005 ◽  
Vol 52 (7) ◽  
pp. 127-133 ◽  
Author(s):  
T. Gaul ◽  
S. Märker ◽  
S. Kunst

Aerobic and anaerobic ammonium oxidation can be combined in a completely mixed moving bed biofilm reactor, allowing for single-stage ammonium removal from wastewater with low COD/N ratio unsuitable for conventional nitrification/denitrification processes (‘deammonification’). Mandatory preconditions are: (a) a low hydraulic retention time to wash out suspended cells competing with mass transfer limited biofilm cells for alkalinity as limiting substrate; and (b) an oxygen flux adapted to the surface loading rate to prevent complete nitrification to nitrate. pH control or ‘NH3 inhibition’ of nitrite oxidation are neither useful nor necessary. By this strategy, oxygen limited biofilms with simultaneous presence of NH4-N and NO2-N were enriched, which allowed for growth of anaerobic ammonium oxidizers. It could be demonstrated that a deammonifying reactor can be purposefully started up within a reasonable span of time and without prior inoculation, if this explicitly described strategy is applied. Depending on surface loading and air flow rate, N removal rates of 4–5 g N/m2 d could be achieved at DO concentrations between 1.0 and 4.0 mg/l.


2012 ◽  
Vol 65 (1) ◽  
pp. 190-195 ◽  
Author(s):  
Liwei Zhang ◽  
Ken Sun ◽  
Na Hu

A laboratory-scale oxic biofilm reactor using loofah sponge as support material was carried out to study its start-up characteristics and the optimum operation parameters in removing organic matter and nitrogen from domestic wastewater. It took no more than 10 days to complete microbiological cultivation and acclimation, indicating that the natural loofah sponge was a superior support material compared with some conventional ones. The influence parameter experiments showed that the hydraulic retention time (HRT) had a significant influence on the COD and NH3-N removal efficiencies, the average COD and NH3-N removal efficiencies were 83.7 and 96.9% respectively when the temperature was 25 ± 2 °C, the influent flow rate was 0.21 L/h and the HRT was 7.5 h. The loofah sponge biofilm system had a strong tolerance to organic shock loading in the present experiment. Additionally, it was found that domestic wastewater could be preferably treated with 88.9% of COD and 98.7% of NH3-N removal efficiencies with the corresponding influent concentrations of 260.0 and 26.8 mg/L, respectively. The observations obtained in the present study indicated that the loofah sponge was an excellent natural support material, potentially feasible for the present system for the treatment of the decentralized domestic wastewater.


2009 ◽  
Vol 60 (9) ◽  
pp. 2365-2371 ◽  
Author(s):  
I. Kim ◽  
H. H. Lee ◽  
Y. C. Chung ◽  
J. Y. Jung

Biofilm and granule reactors were employed to remove nitrogen via an anammox reaction applying synthetic nitrogen wastewater, whose concentration was in the range of 20 to 1,400 mg N/L as total nitrogen. A biofilm reactor was packed with non-woven fabric and a granule reactor was filled with anaerobic granular sludge taken from the brewery wastewater treatment plant. Both reactors were seeded with Planctomycetes KSU-1 and operated for 450 days. The biofilm reactor showed high NH4+-N and NO2−-N removal efficiencies of over 88% and 94%, respectively, until total nitrogen concentration was reached at 800 mg N/L. However, the biofilm reactor showed severe inhibition at over 1,000 mg N/L of total nitrogen due to nitrogen overloading. The granule reactor revealed better nitrogen removal performance than the biofilm reactor, showing high NH4+-N and NO2−-N removal efficiencies of over 90%, even at a total nitrogen concentration of 1,400 mg N/L. However, aggregation of anammox bacteria grown in the sludge bed after long-term operation resulted in the deterioration of nitrogen. The removal ratio of NH4+-N and NO2−-N was close to 1:1, suggesting other reactions related to ammonium oxidation could occur simultaneously. Free ammonia inhibition as well as NO2−-N could be significant when high-strength nitrogenous wastewater was applied.


Sign in / Sign up

Export Citation Format

Share Document