Influence Parameters in the Ozonation of Clofibric Acid Using a Cascade Bubble Column

2012 ◽  
Vol 573-574 ◽  
pp. 538-541
Author(s):  
Yan Ping Duan ◽  
Sven Geissen ◽  
Ling Chen

Ozonation of clofibric acid (CA) in aqueous solution was carried out under continuous operation in a cascade bubble column. The influence of operation parameters including initial CA concentration, gas flow rate, liquid flow rate and pH on the removal of CA and TOC was investigated. The results indicated that ozonation could be used to effectively remove CA from water. Increasing the initial CA concentration resulted in a decrease of the CA and TOC removal efficiency. A comparison of CA removal efficiency and ozone utilization between cascade and conventional bubble column indicated that cascade bubble column was an effective way for increasing the solubility ozone in the reactor.

2016 ◽  
Vol 859 ◽  
pp. 153-157
Author(s):  
Pao Chi Chen ◽  
Sheng Zhong Lin

This work uses a continuous bubble-column scrubber for the absorption of CO2 with a 5M MEA solution under a constant pH environment to explore the effect of the pH of the solution and gas-flow rate (Qg) on the removal efficiency (E), absorption rate (RA), overall mass-transfer coefficient (KGa), liquid flow rate (QL), gas-liquid flow ratio (γ), and scrubbing factors (φ). From the outlet CO2 concentration with a two-film model, E, RA, KGa, QL, γ, and φ can be simultaneously determined at the steady state. Depending on the operating conditions, the results show that E (80-97%), RA(2.91x10-4-10.0x10-4mol/s-L), KGa (0.09-0.48 1/s), QL(8.74-230.8mL/min), γ (0.19-5.39), and φ (0.031-0.74 mol/mol-L) are found to be comparable with other solvents. In addition, RA, KGa, E, and QL have been used to correlate with pH and Qg, respectively, with the results further explained.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 694
Author(s):  
Pao Chi Chen ◽  
Shiun Huang Zhuo

This study used the solvent monoethylamine (MEA)/CaCl2/H2O to investigate CO2 absorption and CaCO3 crystallization in a bubble column scrubber. The variables explored were pH, gas flow rate, gas concentration, the liquid flow rate of the solution to absorb CO2, and CaCO3 crystallization. Under a continuous mode, the solution of CaCl2 was fed continuously, and the pH dropped after CO2 absorption. To maintain the set pH value, there was an automatic input of the MEA solvent into the bubble column. In addition to maintaining the pH, the solution could also absorb CO2 and produce CaCO3 crystals, which served two purposes. The results showed that there were mainly vaterite crystals. At different pH values, the lower the pH, the higher the precipitation rate of vaterite (Fp), and vice versa. However, under different gas flow rates, the Fp decreased as the pH value increased. Additionally, the process variables also affected the absorption rate (RA) and the overall mass-transfer coefficient (KGa) generally increased with increasing pH, gas concentration, and gas flow rate. However, it slowed down under operating conditions at high pH and high gas flow rate. Finally, correlation equations for RA, KGa, and Fp were also obtained and discussed in the study.


2021 ◽  
Vol 19 (1) ◽  
pp. 288-298
Author(s):  
Lien Thi Tran ◽  
Tuan Minh Le ◽  
Tuan Minh Nguyen ◽  
Quoc Toan Tran ◽  
Xuan Duy Le ◽  
...  

Abstract This study explores the possibility of applying high-gravity rotating packed bed (HGRPB) in removing H2S and CO2 from biogas. Ca(OH)2 aqueous solution was used as the absorbent in this study. Different experimental conditions including solution pH, rotating speed (R S) of HGRPB, gas flow rate (Q G), and liquid flow rate (Q L) were investigated with respect to the removal efficiency (E) of H2S and CO2. The experimental and simulated results show that the optimal removal efficiency of H2S and CO2 using HGRPB achieved nearly the same as 99.38 and 99.56% for removal efficiency of H2S and 77.28 and 77.86% for removal efficiency of CO2, respectively. Such efficiencies corresponded with the following optimal conditions: a solution pH of 12.26, HGRPB reactor with the rotating speed of 1,200 rpm, the gas flow rate of 2.46 (L/min), and the liquid flow rate of 0.134 (L/min).


2013 ◽  
Vol 781-784 ◽  
pp. 1637-1645 ◽  
Author(s):  
Ting Jun Ma ◽  
Yi Qing Xu

The degradation effectiveness and reaction kinetics of representative organophosphorus (OP) pesticide in a packed-bed plasma reactor have been studied. Important parameters, including peak voltage, pulse frequency, gas-flow rate, initial concentration, diameter of catalyst particles, and thickness of catalyst bed which influences the removal efficiency, were investigated. Experimental results indicated that rogor removal efficiency as high as 80% can be achieved at 35 kV with the gas flow rate of 800 mL/min and initial concentration of 11.2 mg/m3.The removal efficiency increased with the increase of pulsed high voltage, and pulse frequency, the decrease of the diameter of catalyst particles and the thickness of catalyst bed. Finally, a model was established to predict the degradation of the rogor, which generally can simulate the experimental measurements to some degree.


Konversi ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 6
Author(s):  
Erlinda Ningsih ◽  
Abas Sato ◽  
Mochammad Alfan Nafiuddin ◽  
Wisnu Setyo Putranto

Abstract- One of the most widely used processes for CO2 gas removal is Absorption. Carbon dioxide is the result of the fuel combustion process which of the hazardous gases. The aim of this research is to determine the total mass transfer coefficient and analyze the effect of the absorbent flow rate of the absorbent solution with the promoter and the gas flow rate to the total mass transfer coefficient value. The variables consisted of liquid flow rate: 1, 2, 3, 4, 5 liter/min, gas flow rate: 15, 25, 30, 40, 50 liter/min and MSG concentration: 0%, 1%, 3% and 5% by weight. The solution of Pottasium Carbonate as absorbent with MSG promoter is flowed through top column and CO2 gas flowed from bottom packed column. Liquids were analyzed by titration and the gas output was analyzed by GC. From this research, it is found that the flow rate of gas and the liquid flow rate is directly proportional to the value of KGa. The liquid flow rate variable 5 liters / minute, gas flow rate 15 l / min obtained value of KGa 11,1102 at concentration of MSG 5%. Keywords:  Absorption, CO2,  K2CO3, MSG. 


1994 ◽  
Vol 29 (10-11) ◽  
pp. 231-241 ◽  
Author(s):  
H. T. Chang ◽  
B. E. Rittmann

This paper presents a unified model that inter-relates gas flow rate, liquid flow rate, and hold-ups of each of the liquid, gas, and solid phases in three-phase, fluidized-bed biofilm (TPFBB) process. It describes how carrier properties, biofilm properties, and gas and liquid flow velocities control the system dynamics, which ultimately will affect the density, thickness, and distribution of the biofilm. The paper describes the development of the mathematical model to correlate the effects of gas flow rate, liquid flow rate, solid concentration, and biofilm thickness and density. This knowledge is critically needed in light of the use of TPFBB processes in treating industrial wastewater, which often has high substrate concentration. For example, the proper design of the TPFBB process requires mathematical description of the cause-effect relationship between biofilm growth and fluidization.


1989 ◽  
Vol 8 (2) ◽  
pp. 63-68
Author(s):  
A. J. Rautenbach ◽  
G. Kornelius

Spray columns are widely used in industry as a gas-liquid contacting apparatus because of the advantages of a high transfer area per unit volume and the tow gas side resistance. For a large number of systems, mass transfer parameters are not available and an experimental determination for the system benzene/wash oil was therefore carried out. The experimental technique and design are described. The variation in mass transfer coefficient as function of gas flow rate, liquid flow rate and column height agrees with those published elsewhere.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1169
Author(s):  
Feng Chen ◽  
Dezheng Yang ◽  
Feng Yu ◽  
Yang Kun ◽  
Ying Song

In this work, the azoxystrobin removal in water by using a micro-size discharge array was investigated, and the removal efficiency can reach as high as 98.1% after 9 min plasma treatment as well as the energy utilization being only 0.73 g/(kW·h). Based on the relationship between the generation of gas bubbles and parameters of gas-liquid discharge, it was found that the variation of applied voltage, gas flow rate and initial solution temperature could cause particle number change, mass transfer rate change and the mass transfer time change, which significantly affected the practical applications at last. The experimental results indicated that when gas flow rate was 0.7 SLM (Standard Liter per Minute) and the initial solution temperature was 297 K with the applied voltage of 8 kV and discharge frequency of 6 kHz, the removal efficiency of azoxystrobin achieved maximum. Based on the analysis results of liquid mass spectrometry, the removal pathways of azoxystrobin were supposed by the decomposed by-products. Toxicity tests indicated that the decomposed products were safe and non-toxic. So, this study may reveal an azoxystrobin degradation mechanism and provide a safe, reliable and effective way for azoxystrobin degradation.


Nowadays, CO2 as the product of fossil fuel combustions, is polluting the air and the human environment, and it causes global warming. To reduce the negative effect of CO2 presence, it should be removed from the air by capturing methods. Hollow fiber membrane contactor (HFMC) system is one of the most efficient method for CO2 capturing than the other feasible capturing methods. In the present paper an HFMC absorbing system has been simulated using COMSOL Multiphysics software and the effect of flow rates of gas and liquid on the amount of CO2 removal has been studied. Aqueous solution of Mono-ethanolamine (MEA) is entered as the absorbent liquid in the tubes, and CO2 is removed from the shell side by the diffusion phenomena by participating in the chemical reaction with MEA. The results show that the higher liquid flow rate the higher %CO2 removal from the inserted gas. Against this result, the percentage of CO2 removal decreases with increasing the gas flow rate as expected. Higher gas flow rate leads the gas velocity to higher values and less possibility of absorbing by the diffusion method. The rate of the CO2 removal variation with liquid flow rate is higher than the CO2 removal variation whit the gas flow rate.


2022 ◽  
Vol 964 (1) ◽  
pp. 012030
Author(s):  
Pham-Hung Duong ◽  
Ngoc-Han T. Huynh ◽  
Yong-Soo Yoon

Abstract This study was carried out to assess the treatment ability of color, dye, and COD in the dyeing wastewater containing C.I Reactive Blue 160 by ozonation system. Both batch and continuous operating modes with concurrent and counter-current flows were investigated. The effects of the ozone gas flow rate, pH, temperature, Na2CO3 concentration, and initial dye concentration were evaluated. The decolorization, dye removal efficiencies, and mineralization ability of COD by ozonation were determined. The results indicated that ozonation had high efficiency in the treatment of dyeing wastewater containing C.I Reactive Blue 160. The treatment performance was affected by the ozone gas flow rate, pH, temperature, Na2CO3 concentration, and initial dye concentration. The removal efficiency of color, dye, and COD were 98.04%, 99.84%, and 87.31% for the treatment of 200 mg/L initial dye concentration in batch mode with 30 min ozonation time, respectively. In the continuous operation and counter-current flow, the color, dye, and COD removal efficiencies reached 97.24%, 99.76%, and 86.38% after 30 min HRT, respectively, and higher than concurrent flow. The reaction of ozone and C. I Reactive Blue 160 was the first-order reaction in both batch and continuous operation. The complete mineralization required 90 min ozonation time.


Sign in / Sign up

Export Citation Format

Share Document