scholarly journals Treatment of C.I Reactive Blue 160 by ozonation system

2022 ◽  
Vol 964 (1) ◽  
pp. 012030
Author(s):  
Pham-Hung Duong ◽  
Ngoc-Han T. Huynh ◽  
Yong-Soo Yoon

Abstract This study was carried out to assess the treatment ability of color, dye, and COD in the dyeing wastewater containing C.I Reactive Blue 160 by ozonation system. Both batch and continuous operating modes with concurrent and counter-current flows were investigated. The effects of the ozone gas flow rate, pH, temperature, Na2CO3 concentration, and initial dye concentration were evaluated. The decolorization, dye removal efficiencies, and mineralization ability of COD by ozonation were determined. The results indicated that ozonation had high efficiency in the treatment of dyeing wastewater containing C.I Reactive Blue 160. The treatment performance was affected by the ozone gas flow rate, pH, temperature, Na2CO3 concentration, and initial dye concentration. The removal efficiency of color, dye, and COD were 98.04%, 99.84%, and 87.31% for the treatment of 200 mg/L initial dye concentration in batch mode with 30 min ozonation time, respectively. In the continuous operation and counter-current flow, the color, dye, and COD removal efficiencies reached 97.24%, 99.76%, and 86.38% after 30 min HRT, respectively, and higher than concurrent flow. The reaction of ozone and C. I Reactive Blue 160 was the first-order reaction in both batch and continuous operation. The complete mineralization required 90 min ozonation time.

2012 ◽  
Vol 573-574 ◽  
pp. 538-541
Author(s):  
Yan Ping Duan ◽  
Sven Geissen ◽  
Ling Chen

Ozonation of clofibric acid (CA) in aqueous solution was carried out under continuous operation in a cascade bubble column. The influence of operation parameters including initial CA concentration, gas flow rate, liquid flow rate and pH on the removal of CA and TOC was investigated. The results indicated that ozonation could be used to effectively remove CA from water. Increasing the initial CA concentration resulted in a decrease of the CA and TOC removal efficiency. A comparison of CA removal efficiency and ozone utilization between cascade and conventional bubble column indicated that cascade bubble column was an effective way for increasing the solubility ozone in the reactor.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Xu Zhang ◽  
Sixiang Zhang ◽  
Wei Zhou ◽  
Yang Qi

Odor pollution did not only disturb the human normal life but also aroused the attention of environmental researchers and environmental protection departments. Therefore, the research on odor detecting method and instrument is important to theory and application. On this basis, the self-developed microfluidic chip capillary column is used in our odor detecting system. In this paper, lead the chip column into the chromatography separation system, with its small size, high efficiency, easy integration, and other characteristics to replace the original traditional column. The chip column was used in many gas experiments for several typical VOCs. At different carrier gas flow rates, the baseline value, toluene response, and toluene and methyl sulfide mixed gas separation were compared to verify the experiment to determine the optimal carrier gas flow rate in accordance with its response and separation degree. Under the premise of ensuring column efficiency as high as possible, it is determined that the optimal carrier gas flow rate is 6 ml/min. This paper shows the most proper carrier gas flow rate of our odor detecting system with the self-developed microfluidic chip capillary column.


2014 ◽  
Vol 763 ◽  
pp. 166-201 ◽  
Author(s):  
Rajagopal Vellingiri ◽  
Dmitri Tseluiko ◽  
Serafim Kalliadasis

AbstractWe consider a thin liquid film flowing down an inclined plate in the presence of a counter-current turbulent gas. By making appropriate assumptions, Tseluiko & Kalliadasis (J. Fluid Mech., vol. 673, 2011, pp. 19–59) developed low-dimensional non-local models for the liquid problem, namely a long-wave (LW) model and a weighted integral-boundary-layer (WIBL) model, which incorporate the effect of the turbulent gas. By utilising these models, along with the Orr–Sommerfeld problem formulated using the full governing equations for the liquid phase and associated boundary conditions, we explore the linear stability of the gas–liquid system. In addition, we devise a generalised methodology to investigate absolute and convective instabilities in the non-local equations describing the gas–liquid flow. We observe that at low gas flow rates, the system is convectively unstable with the localised disturbances being convected downwards. As the gas flow rate is increased, the instability becomes absolute and localised disturbances spread across the whole domain. As the gas flow rate is further increased, the system again becomes convectively unstable with the localised disturbances propagating upwards. We find that the upper limit of the absolute instability region is close to the ‘flooding’ point associated with the appearance of large-amplitude standing waves, as obtained in Tseluiko & Kalliadasis (J. Fluid Mech., vol. 673, 2011, pp. 19–59), and our analysis can therefore be used to predict the onset of flooding. We also find that an increase in the angle of inclination of the channel requires an increased gas flow rate for the onset of absolute instability. We generally find good agreement between the results obtained using the full equations and the reduced models. Moreover, we find that the WIBL model generally provides better agreement with the results for the full equations than the LW model. Such an analysis is important for an understanding of the ranges of validity of the reduced model equations. In addition, a comparison of our theoretical predictions with the experiments of Zapke & Kröger (Intl J. Multiphase Flow, vol. 26, 2000, pp. 1439–1455) shows a fairly good agreement. We supplement our stability analysis with time-dependent computations of the linearised WIBL model. To provide some insight into the mechanisms of instability, we perform an energy budget analysis.


Author(s):  
B.S. Soroka ◽  
V.V. Horupa

Natural gas NG consumption in industry and energy of Ukraine, in recent years falls down as a result of the crisis in the country’s economy, to a certain extent due to the introduction of renewable energy sources along with alternative technologies, while in the utility sector the consumption of fuel gas flow rate enhancing because of an increase the number of consumers. The natural gas is mostly using by domestic purpose for heating of premises and for cooking. These items of the gas utilization in Ukraine are already exceeding the NG consumption in industry. Cooking is proceeding directly in the living quarters, those usually do not meet the requirements of the Ukrainian norms DBN for the ventilation procedures. NG use in household gas stoves is of great importance from the standpoint of controlling the emissions of harmful components of combustion products along with maintenance the satisfactory energy efficiency characteristics of NG using. The main environment pollutants when burning the natural gas in gas stoves are including the nitrogen oxides NOx (to a greater extent — highly toxic NO2 component), carbon oxide CO, formaldehyde CH2O as well as hydrocarbons (unburned UHC and polyaromatic PAH). An overview of environmental documents to control CO and NOx emissions in comparison with the proper norms by USA, EU, Russian Federation, Australia and China, has been completed. The modern designs of the burners for gas stoves are considered along with defining the main characteristics: heat power, the natural gas flow rate, diameter of gas orifice, diameter and spacing the firing openings and other parameters. The modern physical and chemical principles of gas combustion by means of atmospheric ejection burners of gas cookers have been analyzed from the standpoints of combustion process stabilization and of ensuring the stability of flares. Among the factors of the firing process destabilization within the framework of analysis above mentioned, the following forms of unstable combustion/flame unstabilities have been considered: flashback, blow out or flame lifting, and the appearance of flame yellow tips. Bibl. 37, Fig. 11, Tab. 7.


1998 ◽  
Vol 63 (6) ◽  
pp. 881-898
Author(s):  
Otakar Trnka ◽  
Miloslav Hartman

Three simple computational techniques are proposed and employed to demonstrate the effect of fluctuating flow rate of feed on the behaviour and performance of an isothermal, continuous stirred tank reactor (CSTR). A fluidized bed reactor (FBR), in which a non-catalytic gas-solid reaction occurs, is also considered. The influence of amplitude and frequency of gas flow rate fluctuations on reactant concentrations at the exit of the CSTR is shown in four different situations.


Author(s):  
Pengju Huo ◽  
Xiaohong Li ◽  
Yang Liu ◽  
Haiying Qi

AbstractThe influences of loose gas on gas-solid flows in a large-scale circulating fluidized bed (CFB) gasification reactor were investigated using full-loop numerical simulation. The two-fluid model was coupled with the QC-energy minimization in multi-scale theory (EMMS) gas-solid drag model to simulate the fluidization in the CFB reactor. Effects of the loose gas flow rate, Q, on the solid mass circulation rate and the cyclone separation efficiency were analyzed. The study found different effects depending on Q: First, the particles in the loop seal and the standpipe tended to become more densely packed with decreasing loose gas flow rate, leading to the reduction in the overall circulation rate. The minimum Q that can affect the solid mass circulation rate is about 2.5% of the fluidized gas flow rate. Second, the sealing gas capability of the particles is enhanced as the loose gas flow rate decreases, which reduces the gas leakage into the cyclones and improves their separation efficiency. The best loose gas flow rates are equal to 2.5% of the fluidized gas flow rate at the various supply positions. In addition, the cyclone separation efficiency is correlated with the gas leakage to predict the separation efficiency during industrial operation.


Sign in / Sign up

Export Citation Format

Share Document