Preparation and Photocatalytic Performance of Nanostructural WO3 Induced by Ion in Hydrothermal Synthesis

2012 ◽  
Vol 580 ◽  
pp. 535-538 ◽  
Author(s):  
Bin Yu ◽  
Hai Feng Chen ◽  
Ting Yan

WO3 nanocrystals have been successfully synthesized via an ion induced auxiliary hydrothermal method. The experiment products were characterized by powder X-ray diffraction (XRD) and the Photocatalytic oxidation performance of products were characterized by using the photocatalytic oxidation of methyl orange under the condition of hydrogen peroxide. The optimal amount of catalyst required for catalytic oxidation experiments and the concentration of methyl orange (MO) were determined. The experimental results indicated that with he enhancement of metallicity in alkali main group, the photocatalytic activity of the WO3 induced by alkali metal cation increased; The SO42- has higher induce catalytic activity than Cl- when the type and quantity of cation are the same; however, the ion induction on the impact of surface area is quite different, and it founded that they comply with this regular pattern, that is Na+> K+> Li+ and SO42-> Cl-.

2010 ◽  
Vol 663-665 ◽  
pp. 187-190 ◽  
Author(s):  
Yu Hui Zhang ◽  
Ji Xin Su ◽  
Xiao Peng Wang ◽  
Qi Pan ◽  
Wen Qu

Based on X-ray diffraction results, the gallery height of modified Mg3Al-LDH was expanded to 9.6Å from the original 4.8Å, indicating that the H3PW12O40 was indeed inserted into the hydroxide layers. Moreover, the results of FT-IR spectra proved the Keggin structure of PW11O397- species. The resulting material showed a high activity of degradation of methyl orange in the presence of H2O2 and UV light irradiation.


2013 ◽  
Vol 734-737 ◽  
pp. 2278-2281 ◽  
Author(s):  
Sheng Tian Huang ◽  
Zheng Hua Xiao ◽  
Jian Zhang Li ◽  
Jun Bo Zhong ◽  
Wei Hu ◽  
...  

In this paper, SnO2 andFe2O3 doped-SnO2 photocatalysts with different molar ratio of Fe/Sn were synthesized by a parallel flow coprecipitation method. The photocatalysts prepared were characterized by Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD) and UV/Vis diffuse reflectance, respectively. The photocatalytic activity of photocatalysts prepared toward decolorization of methyl orange (MO) solution was evaluated. Of all of the photocatalysts prepared among the experimented compositions, Fe2O3 doped-SnO2 with 1.5%Fe possesses the best photocatalytic activity.


2017 ◽  
Vol 748 ◽  
pp. 22-26 ◽  
Author(s):  
Yue Lin ◽  
Hai Feng Chen

Firstly, we made the glucose as raw material to prepare carbon microspheres hydrothermal method. Then carbon microspheres use as a template, and Bi (NO3)3.5H2O and Na2WO4.2H2O as raw material to synthesize the Bi2WO6/carbon composite by refluxing method. Finally, Bi2WO6 samples were obtained by calcination so as to remove the template. And samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflection absorption spectroscopy (DRS). The Rhodamine B (RhB) was simulated as the sewage under the visible light to study the impact of the illumination time, calcination temperature and the amount of catalyst. The results show that Bi2WO6 synthesized by calcination at 500 °C had the best photocatalytic performance, and when samples (30 mg) was put into RhB solution (10 mg/L) and illumination for 180 min, the degradation rate could reach 92%, which demonstrated that the samples exhibit excellent visible photocatalytic performance.


2012 ◽  
Vol 433-440 ◽  
pp. 367-371
Author(s):  
Min Wang ◽  
Qiong Liu

Pd/FeVO4composite photocatalysts were synthesized by the impregnation method.The as-prepared samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM).And the obtained samples were characterized by XRD, SEM and BET. The effect of Pd-loaded contents on their photocatalytic activity was studied by photocatalytic oxidation of methyl orange under 20 W UV light irradiation. The mechanism was also analysised. The results show that PdO can remarkably affect the photocatalytic activity.The photocatalyty activity of Pd-loaded FeVO4was significantly enhanced and the decolorization rate of MO can be increased 27% more than that of pure FeVO4sample when loading content is 3.5wt %.


2019 ◽  
Vol 74 (10) ◽  
pp. 937-944 ◽  
Author(s):  
Babiker Y. Abdulkhair ◽  
Mutaz E. Salih ◽  
Nuha Y. Elamin ◽  
A. MA. Fatima ◽  
A. Modwi

AbstractStrenuous efforts have been employed to prepare zinc oxide (ZnO) with eco-friendly methods; however, few studies have reported the fabrication of ZnO using a sustainable procedure. In this study, spherical ZnO nanoparticles were successfully fabricated for photocatalysis applications using a simple and eco-friendly method using an arabinose sugar solution. The ZnO nanoparticles with a wurtzite structure were obtained by combining zinc nitrate and arabinose in water, followed by heating, evaporation, and calcinations at different annealing temperatures. The annealed ZnO photocatalysts were characterised via X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The findings revealed a hexagonal wurtzite structure and good crystallinity with crystallite size increasing from 18 to 31 nm by means of an increase in the annealing temperature. The photocatalytic performance was examined to determine the degradation of mix dye waste. The spherical ZnO nanoparticles showed mix pollutant degradation of 84 % in 25 min at 400 °C.


2020 ◽  
Vol 9 (1) ◽  
pp. 359-365
Author(s):  
Hui Shu ◽  
Yujian Song ◽  
Qiang Liu ◽  
Maobin Luo

AbstractTiO2 has many advantages, such as UV resistance, thermal stability, and antibacterial; the attention toward TiO2 composite materials (TCMs) is rapidly increasing in the protection of stone culture relics. An innovative rod-shaped TCM was synthesized in this study. The structure and morphology of TCM were studied by X-ray diffraction and scanning electron microscopy. The acid resistance, weather resistance, hydrophilicity, and photocatalytic performance of TCM had been investigated. The experimental results indicated that TCM has good protection effects. The stone sample treated with TCM has stronger acid resistance and weather resistance, better hydrophilicity, and more excellent photocatalytic activity compared with the untreated stone. More importantly, the stone treated with TCM has better acid resistance and weather resistance than that treated with normal shaped TiO2 materials of the previous study. This work describes an effective way to protect stone cultural relics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mikolaj Grabowski ◽  
Ewa Grzanka ◽  
Szymon Grzanka ◽  
Artur Lachowski ◽  
Julita Smalc-Koziorowska ◽  
...  

AbstractThe aim of this paper is to give an experimental evidence that point defects (most probably gallium vacancies) induce decomposition of InGaN quantum wells (QWs) at high temperatures. In the experiment performed, we implanted GaN:Si/sapphire substrates with helium ions in order to introduce a high density of point defects. Then, we grew InGaN QWs on such substrates at temperature of 730 °C, what caused elimination of most (but not all) of the implantation-induced point defects expanding the crystal lattice. The InGaN QWs were almost identical to those grown on unimplanted GaN substrates. In the next step of the experiment, we annealed samples grown on unimplanted and implanted GaN at temperatures of 900 °C, 920 °C and 940 °C for half an hour. The samples were examined using Photoluminescence, X-ray Diffraction and Transmission Electron Microscopy. We found out that the decomposition of InGaN QWs started at lower temperatures for the samples grown on the implanted GaN substrates what provides a strong experimental support that point defects play important role in InGaN decomposition at high temperatures.


2014 ◽  
Vol 608 ◽  
pp. 224-229 ◽  
Author(s):  
Potjanaporn Chaengchawi ◽  
Karn Serivalsatit ◽  
Pornapa Sujaridworakun

A visible-light responsive CdS/ZnO nanocomposite photocatalyst was successfully synthesized by precipitation of CdS nanoparticles, using Cd (NO3)2 and Na2S as starting materials, on ZnO nanoparticles and then calcined at 400°C for 2 hours. The effects of the mole ratio of CdS and ZnO in the composites on their phase, morphology, and surface area were investigated by X-ray Diffraction (XRD), scanning electron microscope (SEM), Brunauer Emmett Teller method (BET), respectively. The photocatalytic degradation of methylene blue solution in the presence of composite products under visible-light irradiation was investigated. The results showed that the mole ratio of CdS and ZnO played a significant role on photocatalytic performance. The highest photocatalytic activity was obtained from the CdS/ZnO nanocomposite with mole ratio of 1:4, which is higher than that of pure CdS and pure ZnO.


2008 ◽  
Vol 1122 ◽  
Author(s):  
Gianguido Baldinozzi ◽  
David Simeone ◽  
Dominique Gosset ◽  
Mickael Dollé ◽  
Georgette Petot-Ervas

AbstractWe have synthesized Gd-doped ceria polycrystalline samples (5, 10, 15 %mol), having relative densities exceeding 95% and grain sizes between 30 and 160 nm after axial hot pressing (750 °C, 250 MPa). The samples were prepared by sintering nanopowders obtained by sol-gel chemistry methods having a very narrow size distribution centered at about 16 nm. SEM and X-ray diffraction were performed to characterize the sample microstructures and to assess their structures. We report ionic conductivity measurements using impedance spectroscopy. It is important to investigate the properties of these systems with sub-micrometric grains and as a function of their composition. Therefore, samples having micrometric and nanometric grain sizes (and different Gd content) were studied. Evidence of Gd segregation near the grain boundaries is given and the impact on the ionic conductivity, as a function of the grain size and Gd composition, is discussed and compared to microcrystalline samples.


2018 ◽  
Author(s):  
Laura Abad Galán ◽  
Alexandre N. Sobolev ◽  
Eli Zysman-Colman ◽  
Mark Ogden ◽  
Massimiliano Massi

<i>β</i>-Triketonates have been recently used as chelating ligands for lanthanoid ions, presenting unique structures varying from polynuclear assemblies to polymers. In an effort to overcome low solubility of the complexes of tribenzoylmethane, four <i>β</i>-triketones with higher lipophilicity were synthesised. Complexation reactions were performed for each of these molecules using different alkaline bases in alcoholic media. X-ray diffraction studies suggested that the ligands were undergoing decomposition under the reaction conditions. This is proposed to be caused by <i>in situ</i>retro-Claisen condensation reactions, consistent with two examples that have been reported previously. The lability of the lanthanoid cations in the presence of a varying set of potential ligands gave rise to structures where one, two, or three of the molecules involved in the retro-Claisen condensationreaction were linked to the lanthanoid centres. These results, along with measurements of ligand decomposition in the presence of base alone, suggest that using solvents of lower polarity will mimimise the impact of the retro-Claisen condensation in these complexes. <br>


Sign in / Sign up

Export Citation Format

Share Document