Modeling and Stability Analysis of SiCp/Al Composites Thin-Walled Workpiece in Rotary Ultrasonic Machining

2012 ◽  
Vol 591-593 ◽  
pp. 527-530
Author(s):  
Ming Wang ◽  
Ming Zhou

Particle reinforced aluminium matrix composites could be used in manufacturing of aviation thin-walled workpiece due to its excellent performances, but it is hard to be manufactured. Rotary ultrasonic machining (RUM) is very suitable for machining particle reinforced aluminum matrix composites with moderate or high volume fraction. Chatter appears very easily in machining process of thin-walled workpiece and it can seriously reduce the quality of components. Based on the dynamic characteristics of machining process, a stability analytical model is built. It is analyzed that the process stability of a thin-walled workpiece of SiCp/Al composites reinforced with 45% volume fraction, and the stability lobe diagram is plotted by using MATLAB. According to stability analysis results, a machining experiment is conducted and the test results indicate chatter could be prevented effectively by this method.

2014 ◽  
Vol 1017 ◽  
pp. 98-103
Author(s):  
Fei Hu Zhang ◽  
Kai Wang ◽  
Peng Qiang Fu ◽  
Meng Nan Wu

With silicon particles reinforced aluminum matrix composites with high volume fraction becoming a new hotspot on research and application in the aerospace materials and electronic packaging materials, the machinability of this material needs to be explored. This paper reports research results obtained from the surface grinding experiment of silicon particles reinforced aluminum matrix composites using black silicon carbide wheel, green silicon carbide wheel, white fused alumina wheel and chromium alumina wheel. The issues discussed are grinding force, surface roughness, the comparison of different grinding wheels, the micro-morphology of the work piece. The results showed that the grinding force was related with the grinding depth and the grinding wheel material, the grinding force was increasing as the grinding depth growing. The surface roughness was between 0.29μm and 0.48μm using the silicon carbide wheel. The surface of the work piece had concaves caused by silicon particles shedding and grooves caused by the grains observed by the SEM and CLSM.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540002 ◽  
Author(s):  
Dongfeng Cheng ◽  
Jitai Niu ◽  
Zeng Gao ◽  
Peng Wang

This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al – Si – Cu – Zn – Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7261
Author(s):  
Shucong Xu ◽  
Lin Yuan ◽  
Lei Wang ◽  
Jinyu Li ◽  
Fuchang Xu ◽  
...  

The poor formability of high volume fraction whisker reinforced aluminum matrix composites of original squeeze casting is an important factor restricting its further development and application. Currently, there are no reports on the secondary forgeability of aluminum matrix composites of original squeeze casting, although some papers on its first forgeability are published. The secondary forgeability is very important for most metals. This study aims to investigate the secondary forgeability of aluminum matrix composites. In this study, the secondary upsetting experiments of 20 vol% SiCw + Al18B4O33w/2024Al composites, treated by the original squeeze casting and extrusion, were carried out. The first upsetting deformation is close to the forming limit, the secondary upsetting deformation under the same deformation conditions was carried out to investigate the secondary forgeability. The experimental results show that, unlike aluminum alloys, the 20 vol% SiCw + Al18B4O33w/2024Al composites at the original squeeze casting and extrusion states have no secondary forgeability due to the whisker rotating and breaking during the secondary upsetting. The high volume fraction whisker reinforced aluminum matrix composites of original squeeze casting cannot be formed by the multiple-forging method since the cavities and cracks caused by whisker fracture continue to expand during secondary processing, which leads to further extension of macroscopic cracks.


2017 ◽  
Vol 5 (2) ◽  
pp. 20-30
Author(s):  
Zaman Khalil Ibrahim

In this research aluminum matrix composites (AMCs) was reinforced by titanium carbide (TiC) particles and was produced. Powder metallurgy technique (PM) has been used to fabricate AMCs reinforced with various amounts (0%, 4%, 8%, 12%, 16% and 20% volume fraction) of TiC particles to study the effect of different volume fractions on mechanical properties of the Al-TiC composites. Measurements of compression strength and hardness showed that mechanical properties of composites increased with an increase in volume fraction of TiC Particles. Al-20 % vol. TiC composites exhibited the best properties with hardness value (97HRB) and compression strength value (275Mpa).


1993 ◽  
Vol 323 ◽  
Author(s):  
Shy-Wen Lai ◽  
D. D. L. Chung

AbstractAluminum-matrix composites containing AIN or SiC particles were fabricated by vacuum infiltration of liquid aluminum into a porous particulate preform under an argon pressure of up to 41 MPa. Al/AIN was superior to Al/SiC in thermal conductivity. At 59 vol.% AIN, Al/AlN had a thermal conductivity of 157 W/m. °C and a thermal expansion coefficient of 9.8 × 10−-6°C−1 (35–100 °C). Al/AlN had similar tensile strength and higher ductility compared to Al/SiC of a similar reinforcement volume fraction at room temperature, but exhibited higher tensile strength and higher ductility at 300–400°C. The ductility of Al/AlN increased with increasing temperature from 22 to 400°C, while that of Al/SiC did not change with temperature. The superior high temperature resistance of Al/AlN is attributed to the lack of a reaction between Al and AIN, in contrast to the reaction between Al and SiC in AI/SiC.


Sign in / Sign up

Export Citation Format

Share Document