Investigation of Numerical Stability of Pipe-Flow Simulation under Strong Oscillation of Inlet Velocity

2012 ◽  
Vol 591-593 ◽  
pp. 801-805
Author(s):  
Xiao Gang Yi ◽  
Chao Luo ◽  
Dong Li ◽  
Zuo Liang Zhang

Pressure distribution inside a fluid-conveying pipe is significant information for reasonable pipe design or mitigation of pipe vibration caused by fluid impact. Generally, a steady solution of pressure information can be obtained based on traditional CFD simulation if the inlet velocity of pipe is time independent. Unfortunately, strong oscillation of inlet velocity often happens in real engineering operations such as fuel injection or pumping process. This paper focuses on the simulation of the transient phenomenon of fluid flow inside a pipe based on the time-dependant inlet velocity. A 2D numerical pipe with an elbow is built based on Eulerian scheme and structured mesh. It is found that numerical instability occurs and convergence becomes difficult if inlet velocity presents obvious cyclic oscillation with big amplitude. Numerical oscillation increases especially when inlet velocity decreases from a big value to zero. Traditional finite volume method and cavitation model are tried and numerical results show that the convergence can be improved evidently based on cavitation model although numerical instability can not be overcome completely.

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 799
Author(s):  
Yuanchi Cui ◽  
Xuewen Wang ◽  
Chengpeng Zhang ◽  
Jilai Wang ◽  
Zhenyu Shi

Accurate analysis of the resin filling process into the mold cavity is necessary for the high-precision fabrication of moth-eye nanostructure using the ultraviolet nanoimprint lithography (UV-NIL) technique. In this research, a computational fluid dynamics (CFD) simulation model was proposed to reveal resin filling behavior, in which the effect of boundary slip was considered. By comparison with the experimental results, a good consistency was found, indicating that the simulation model could be used to analyze the resin filling behavior. Based on the proposed model, the effects of process parameters on resin filling behavior were analyzed, including resin viscosity, inlet velocity and resin thickness. It was found that the inlet velocity showed a more significant effect on filling height than the resin viscosity and thickness. Besides, the effects of boundary conditions on resin filling behavior were investigated, and it was found the boundary slip had a significant influence on resin filling behavior, and excellent filling results were obtained with a larger slip velocity on the mold side. This research could provide guidance for a more comprehensive understanding of the resin filling behavior during UV-NIL of subwavelength moth-eye nanostructure.


2007 ◽  
Vol 30 (7) ◽  
pp. 640-648 ◽  
Author(s):  
R. Kaminsky ◽  
K. Dumont ◽  
H. Weber ◽  
M. Schroll ◽  
P. Verdonck

The aim of this study was to validate the 2D computational fluid dynamics (CFD) results of a moving heart valve based on a fluid-structure interaction (FSI) algorithm with experimental measurements. Firstly, a pulsatile laminar flow through a monoleaflet valve model with a stiff leaflet was visualized by means of Particle Image Velocimetry (PIV). The inflow data sets were applied to a CFD simulation including blood-leaflet interaction. The measurement section with a fixed leaflet was enclosed into a standard mock loop in series with a Harvard Apparatus Pulsatile Blood Pump, a compliance chamber and a reservoir. Standard 2D PIV measurements were made at a frequency of 60 bpm. Average velocity magnitude results of 36 phase-locked measurements were evaluated at every 10° of the pump cycle. For the CFD flow simulation, a commercially available package from Fluent Inc. was used in combination with in-house developed FSI code based on the Arbitrary Lagrangian-Eulerian (ALE) method. Then the CFD code was applied to the leaflet to quantify the shear stress on it. Generally, the CFD results are in agreement with the PIV evaluated data in major flow regions, thereby validating the FSI simulation of a monoleaflet valve with a flexible leaflet. The applicability of the new CFD code for quantifying the shear stress on a flexible leaflet is thus demonstrated. (Int J Artif Organs 2007; 30: 640–8)


2016 ◽  
Vol 9 (2) ◽  
pp. 158-166
Author(s):  
Ardak Akhatova ◽  
Assylan Kassymov ◽  
Meruyert Kazmaganbetova ◽  
Luis Ramon Rojas-Solórzano

The aim of this paper is to consider one of the most traffic-loaded regions of Astana city (Kazakhstan) and to determine the concentration of carbon-monoxide (CO) in the air during the peak hours. CFD analysis based on the SolidWorks-EFD platform was used to simulate the dispersion of contaminants given the estimated emission rates and weather conditions at the crossroad of Bogenbay Batyr and Zhenis Avenues in Astana. Turbulence prediction was based on k-ε model with wall functions. The governing equations were discretized using the finite volume method and a 2nd order spatial scheme. The mesh verification was based on 1% convergence criterion for a 50% of mesh density increment; air pressure near the wall of a selected building was chosen as the parameter to control the convergence. Numerical results are presented for prevailing conditions during all 4 seasons of the year, demonstrating that the highest levels of CO are recorded in summer and reach the values up to 11.2 ppm which are still lower than the maximum level admitted for humans. Nevertheless, obtained results show that Astana is gradually becoming a city that is likely to reach the critical levels of pollutants in the nearest future if control measures are not taken with enough anticipation. As for a future work, it is proposed to perform in-situ validation of specific scenarios to check and support the results obtained with CFD and to develop then specific policies for tackling the problem before it becomes evident.


2021 ◽  
Vol 25 (4) ◽  
pp. 23-39
Author(s):  
Nebras Q. Hussein ◽  
◽  
Sadiq S. Muhsun ◽  
Zainab T. Al-Sharify ◽  
Huda T. Hamed ◽  
...  

Efforts were made in this search to design a physical and computer model using the CFD techniques to simulate the problem of transporting pollutants through a porous media in unsteady state case. A physical model was built to measure the transmission of a copper nitrate pollutant at an initial concentration of 25 mg/l in a medium consists of (sand + gravel) and study the movement of the pollutant through. Then the results of the pollutant transport through used in the physical model were entered as entry data to the CFD simulated model using COMSOL 5.4. Software. The results of the CFD simulated model showed that the change in the inlet velocity to more than 20% of the initial velocity increases the pollutant concentration and reduces the time wanted to reach the highest value of the pollutant, while reducing the inlet velocity to less than 20% of the initial velocity, cause to decrease the concentration and increase the time to reach the highest pollutant value. When changing the porosity by (30%, -15%) of the initial porosity, it was noticed that increasing the porosity value reduces the pollutant concentration and increases the time required to reach the highest value of the pollutant. while when the porosity decreases to 15% of the initial porosity, the concentration increases the time decreases to reach the highest value of the pollutant at all control points. The adsorption factor has a noticeable effect on the emergence of the pollutant, while the temperature change was almost imperceptible for all degrees. However, the results of laboratory work were compared with the results of the CFD simulated model, which showed a good match between them.


Author(s):  
Djedid Taloub ◽  
Abdelkarim Bouras ◽  
Zied Driss

A numerical study of the natural convection of laminar heat transfers in the stationary state in a half-elliptic inclined cavity, which represents a continuation of the work done, we studied the influence of the tilt of the cavity by varying the angle — entered 0 degrees, which corresponds to the horizontal cavity, up to 15 degrees. For each value of δ we varied the Rayleigh number from 2.13 103 to 106. The system of equations governing the problem solved numerically by the fluent calculation code based on the finite volume method. Based on the Boussinesq approximation. Both bottom and upper walls maintained at a constant temperature. The interest of this study is to see the influence of the tilt of the half-elliptic cavity on the structure of the flow and the distribution of temperature. These results can exploited in semi-elliptic agricultural greenhouses that rest on sloping soils. We chose a Prandtl number 0.71 that corresponds to the air. Keywords: Heat transfer; half-elliptical; Natural convection; Laminar flow; Multicellular; CFD simulation


Author(s):  
P. Adami ◽  
F. Martelli

A 3D CFD simulation of turbulent reactive flows is discussed. The original compressible version of the solver HybFlow designed for turbine rows investigation is here applied for low speed burning flow. A conserved scalar approach is considered to simulate the turbulent reacting flow field of non-premixed flames. The spatial discretization is based on an upwind finite volume method for unstructured grids using the Roe’s Riemann solver with a non-linear TVD scheme. The steady state solution is computed by means of an implicit relaxed Newton method. The linear solver is GMRES coupled with an ILU(0) preconditioning scheme. The turbulence chemistry interaction is described using a presumed β-PDF Flamelet approach. Two test applications are here presented to verify the methodology characteristics for a pilot-jet turbulent flame and a bluff-body stabilized flame both using CH4. A model combustor supplied with propane is also briefly shown as an example of application to a more realistic configuration.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 889 ◽  
Author(s):  
Ivan Gomez ◽  
Andrés Gonzalez-Mancera ◽  
Brittany Newell ◽  
Jose Garcia-Bravo

This article contains the results and analysis of the dynamic behavior of a poppet valve through CFD simulation. A computational model based on the finite volume method was developed to characterize the flow at the interior of the valve while it is moving. The model was validated using published data from the valve manufacturer. This data was in accordance with the experimental model. The model was used to predict the behavior of the device as it is operated at high frequencies. Non-dimensional parameters for generalizing and analyzing the effects of the properties of the fluid were used. It was found that it is possible to enhance the dynamic behavior of the valve by altering the viscosity of the working fluid. Finally, using the generated model, the influence of the angle of the poppet was analyzed. It was found that angle has a minimal effect on pressure. However, flow forces increase as angle decreases. Therefore, reducing poppet angle is undesirable because it increases power requirements for valve actuation.


Sign in / Sign up

Export Citation Format

Share Document