Numerical Simulation for Dynamic Recrystallization of Ti40 Alloy in Hot Compression by Finite Element Method

2012 ◽  
Vol 602-604 ◽  
pp. 559-564
Author(s):  
Xin Song ◽  
Ke Lu Wang ◽  
Xiao Bo Zhang ◽  
Shi Qiang Lu

Hot compression tests of Ti40 alloy was carried out on a GLEEBLE 3500 thermo- mechanical simulator at the deformation temperatures of 950~1100°C, the strain rates of 0.01~0.1s-1 and the height reductions from 20% to 60%. The true stress/true strain curves were obtained through the tests. Through physical experiment and FEM-based microstructure modelings, the dynamic recrystallizaiton (DRX) behavior of the alloy is extensively explored. The results show that increasing true strain, raising deformation temperature and reducing strain rate are contribute to the DRX of the Ti40 alloy. The simulation results agree well with the experiment results, which prove the accuracy of the microstructure evolution models for predicting the DRX process during hot compression.

2018 ◽  
Vol 913 ◽  
pp. 63-68 ◽  
Author(s):  
Zhu Hua Yu ◽  
Da Tong Zhang ◽  
Wen Zhang ◽  
Cheng Qiu

Hot compression tests of homogenized 6063 Al alloy were carried out in the temperatures range from 390°C to 510°C and strain rates from 1s-1 to 20s-1 on a Gleeble-3500 thermal simulation machine. The results showed that the flow stress decreased with increasing deformation temperature or decreasing strain rate. The dynamic softening effect was more obvious when the alloy was deformed at strain rate of 20 s-1. The Arrhenius-type constitutive equation with strain compensation can accurately describe the flow stress of 6063 aluminum alloy during hot compression. Shear bands appeared in grains interior when the alloy deformed at high strain rates, corresponding to high Zenner-Hollomon (Z) parameters. When deformed under the conditions with low Z parameters, the dynamic recrystallization started occurred.


2012 ◽  
Vol 229-231 ◽  
pp. 55-58
Author(s):  
Jun Fan

To obtain the know-how of the deficiency for the filling capability, taking Ti75 alloy as the research object, at the same height of reducing, strain rates during forming as the control objective, the finite element numerical simulation method was used to simulate the hot compression with DEFORM-3D, analyzing the effect of the strain rates on the distribution of strain and stress.


1992 ◽  
Vol 114 (1) ◽  
pp. 13-18 ◽  
Author(s):  
F. Wang ◽  
J. G. Lenard

Ring compression tests were conducted at constant true strain rates in the temperature range of 900–975°C. The constant friction shear factor, m, was determined using a calibration chart. Scaling was permitted during the experiments in which a glass based lubricant was also used. Frictional conditions were affected most by the rate of strain; increasing it led to lower values of m.


2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840073
Author(s):  
Hui Li ◽  
Yi-Bo Jiang ◽  
Jian-Wen Cai

Azimuthal electromagnetic wave logging-while-drilling (LWD) technology can detect weak electromagnetic wave signal and realize real-time resistivity imaging. It has great values to reduce drilling cost and increase drilling rate. In this paper, self-adaptive hp finite element method (FEM) has been used to study the azimuthal resistivity LWD responses in different conditions. Numerical simulation results show that amplitude attenuation and phase shift of directional electromagnetic wave signals are closely related to induced magnetic field and azimuthal angle. The peak value and polarity of geological guidance signals can be used to distinguish reservoir interface and achieve real-time geosteering drilling. Numerical simulation results also show the accuracy of the self-adaptive hp FEM and provide physical interpretation of peak value and polarity of the geological guidance signals.


2015 ◽  
Vol 1096 ◽  
pp. 417-421
Author(s):  
Pei Luan Li ◽  
Zi Qian Huang

By the use of finite element method, this paper predicts the effects of the shapes of reinforcements with different ductility (Co) on the effective elastic response for WC-Co cemented carbide. This paper conducts a comparative study on the material properties obtained through theoretical model, numerical simulation and experimental observations. Simulation results indicate that the finite element method is more sophisticated than the theoretical prediction.


2014 ◽  
Vol 1058 ◽  
pp. 165-169 ◽  
Author(s):  
Shi Ming Hao ◽  
Jing Pei Xie

The hot deformation behaviors of 30%SiCp/2024 aluminum alloy composites was studied by hot compression tests using Gleeble-1500 thermomechanical simulator at temperatures ranging from 350-500°C under strain rates of 0.01-10 s-1. The true stress-true strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the flow stress decreases with the increase of deformation temperature at a constant strain rate, and increases with the increase of strain rate at constant temperature, indicating that composite is a positive strain rate sensitive material. The flow stress behavior of composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 183.251 kJ/mol. The optimum hot working conditions for this material are suggested.


Author(s):  
Yan-Lei Liu ◽  
Jin-Yang Zheng ◽  
Shu-Xin Han ◽  
Yong-Zhi Zhao

A numerical model for dispersion of hydrogen in hydrogen powered automobiles was established basing on finite element method with species transport and reaction module of FLUENT. And corresponding numerical simulations were done in order to analysis the dispersion of hydrogen due to leakage from different position of the storage cylinder on the automobiles. Also, the distribution of the hazard region due to hydrogen dispersion was obtained. The simulation results show that the baffle above the cylinder can accumulate the hydrogen. Therefore, the high concentration region of hydrogen exists near the baffle. The study can provide reference for hydrogen sensor placement and safety design of hydrogen powered automobiles.


2012 ◽  
Vol 190-191 ◽  
pp. 517-521
Author(s):  
Bao Guo Yuan ◽  
Qiang Chen ◽  
Hai Ping Yu ◽  
Ping Li ◽  
Ke Min Xue ◽  
...  

Compression tests of the hydrogenated Ti6Al4V0.2H alloy were carried out using an Instron 5569 machine at room temperature. True stress-strain curves of the hydrogenated Ti6Al4V0.2H alloy under different compressive strains were obtained. Microstructure evolution of the hydrogenated Ti6Al4V0.2H alloy during the process of compression was investigated by optical microscopy and transmission electron microscopy. Results show that true stress-true strain curves of Ti6Al4V0.2H alloy have good repeatability. The deformation of grains, the dislocation density and slipping evolution during the process of compression are discussed.


2015 ◽  
Vol 1088 ◽  
pp. 186-190 ◽  
Author(s):  
Ben Yang ◽  
Zhou Zheng ◽  
Li Xin Wang ◽  
Yong Gang Wu

The isothermal hot compression tests of Q235 steel over a wide range of temperatures (1023-1123 K), strain (0.7) and strain rates (1、5、10 s−1) were performed on Gleeble-1500 system. The results show that when the deformation temperature is constant, as the strain rate increases, the flow stress also increases; Use the JC model to establish constitutive relation equation with true stress-true strain curve. And compare the prediction value of the constitutive relation equation with the experimental values, the relative error between the two is within the allowable range, indicating that the JC model constitutive relation equation applicable for the thermal deformation of Q235 steel.


Sign in / Sign up

Export Citation Format

Share Document