A Simulation Model for Multi-Factor Sensitivity Analysis on Energy Demand

2012 ◽  
Vol 621 ◽  
pp. 352-355
Author(s):  
Zhong Fu Tan ◽  
Shu Xiang Wang ◽  
Chen Zhang ◽  
Li Qiong Lin ◽  
Yin Hui Zhao

This paper analyses multi influencing factors of energy demand, using energy demand forecast regression model reveals inner relations between each factor and energy demand. Establish simulation model of the relation between GDP, energy intense and energy demand. Under the change in population, urbanization and energy efficiency, this paper gives analysis model of energy demand change.

2021 ◽  
Vol 18 (6) ◽  
pp. 172988142110597
Author(s):  
Peng Liu ◽  
Xinzhou Qiao ◽  
Xuhui Zhang

This article aims to establish the relationship between the position and cable tension influencing factors and the stability, and propose a method for quantitative stability sensitivity assessment for a cable-based coal–gangue picking robot. Firstly, a structural stability measure approach is proposed for the cable-based coal–gangue picking robot. Secondly, a stability sensitivity analysis model is developed to investigate the stability sensitivity on the selected influencing factors based on the grey relational degree, where the influencing degree of each factor on the stability for the cable-based coal–gangue picking robot is explored with grey relational analysis. At last, a numerical study is carried out to demonstrate the stability measure approach and stability sensitivity analysis model for the cable-based coal–gangue picking robot was scientific and reasonable, where the end-grab position set which the robot can meet the predetermined stability requirements is obtained. And meanwhile, the correlation of each influencing factor on the stability for the robot is calculated. And the stability sensitivity simulation results show that (1) the correlation of the seven influencing factors on the stability are, in a descending order, cable tension T 2 > cable tension T 4 > cable tension T 3 > cable tension T 1 > z-direction displacement of the end-grab > x-direction displacement > y-direction displacement; (2) among the influencing factors, the cable tensions have greater influence on the stability of coal–gangue picking robot, and it is followed by the z-direction displacement of the end-grab, while y-direction displacement is found to have the minimal influence. This article provides a guiding direction for robust design of the sorting trajectory planning and control of the coal–gangue picking robots.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3095 ◽  
Author(s):  
Rafael Sánchez-Durán ◽  
Joaquín Luque ◽  
Julio Barbancho

The energy transition from fossil fuels to carbon-free sources will be a big challenge in the coming decades. In this context, the long-term prediction of energy demand plays a key role in planning energy infrastructures and in adopting economic and energy policies. In this article, we aimed to forecast energy demand for Spain, mainly employing econometrics techniques. From information obtained from institutional databases, energy demand was decomposed into many factors and economy-related activity sectors, obtaining a set of disaggregated sequences of time-dependent values. Using time-series techniques, a long-term prediction was then obtained for each component. Finally, every element was aggregated to obtain the final long-term energy demand forecast. For the year 2030, an energy demand equivalent to 82 million tons of oil was forecast. Due to improvements in energy efficiency in the post-crisis period, a decoupling of economy and energy demand was obtained, with a 30% decrease in energy intensity for the period 2005–2030. World future scenarios show a significant increase in energy demand due to human development of less developed economies. For Spain, our research concluded that energy demand will remain stable in the next decade, despite the foreseen 2% annual growth of the nation’s economy. Despite the enormous energy concentration and density of fossil fuels, it will not be affordable to use them to supply energy demand in the future. The consolidation of renewable energies and increasing energy efficiency is the only way to satisfy the planet’s energy needs.


2019 ◽  
Vol 2 (5) ◽  
Author(s):  
Mengda Zhang ◽  
Chenjing Zhou ◽  
Tian-tian Zhang ◽  
Yan Han

Selecting check index quantitatively is the core of the calibration of micro traffic simulation parameters at signal intersection. Five indexes in the node (intersection) module of VISSIM were selected as the check index set. Twelve simulation parameters in the core module were selected as the simulation parameters set. Optimal process of parameter calibration was proposed and model of the intersection of Huangcun west street and Xinghua street in Beijing was built in VISSIM to verify it. The sensitivity analysis between each check index and simulation parameter in their own set was conducted respectively. Sensitive parameter sets of different check indices were obtained and compared. The results show that different indexes have different size of set, and average vehicle delay's is maximum, so it's necessary to select index quantitatively. The results can provide references for scientific selection of the check indexes and improve the study efficiency of parameter calibration.


Author(s):  
Tengjiao Lin ◽  
Daokun Xie ◽  
Ziran Tan ◽  
Bo Liu

The aim of this paper is to investigate the influence of structure parameters on the vibration characteristics and improve the dynamic performance of marine gearbox. A finite element model was established to solve the dynamic response by using modal superposition method. Based on the theory of multi-objective optimization design, the structure sensitivity analysis model of marine gearbox was established, which takes the structure parameters of the housing as design variables. The modal and response sensitivity was obtained by using the optimal gradient method. According to the results of sensitivity analysis, a modal and response optimization model of marine gearbox was established. The objective was to avoid natural frequencies from the excitation frequencies and minimize the root mean square of vibration acceleration of the evaluating points on the surface of housing. Then the modal optimization and response optimization of gearbox were carried out by using zero-order and first-order optimization method. The results indicate that the dynamic optimization of the gearbox can be achieved. After optimization, the amplitude of vibration acceleration of the evaluating points on the housing surface has been reduced and the resonance of marine gearbox can be avoided.


2021 ◽  
Vol 13 (13) ◽  
pp. 7251
Author(s):  
Mushk Bughio ◽  
Muhammad Shoaib Khan ◽  
Waqas Ahmed Mahar ◽  
Thorsten Schuetze

Electric appliances for cooling and lighting are responsible for most of the increase in electricity consumption in Karachi, Pakistan. This study aims to investigate the impact of passive energy efficiency measures (PEEMs) on the potential reduction of indoor temperature and cooling energy demand of an architectural campus building (ACB) in Karachi, Pakistan. PEEMs focus on the building envelope’s design and construction, which is a key factor of influence on a building’s cooling energy demand. The existing architectural campus building was modeled using the building information modeling (BIM) software Autodesk Revit. Data related to the electricity consumption for cooling, building masses, occupancy conditions, utility bills, energy use intensity, as well as space types, were collected and analyzed to develop a virtual ACB model. The utility bill data were used to calibrate the DesignBuilder and EnergyPlus base case models of the existing ACB. The cooling energy demand was compared with different alternative building envelope compositions applied as PEEMs in the renovation of the existing exemplary ACB. Finally, cooling energy demand reduction potentials and the related potential electricity demand savings were determined. The quantification of the cooling energy demand facilitates the definition of the building’s electricity consumption benchmarks for cooling with specific technologies.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3852
Author(s):  
Daniel Plörer ◽  
Sascha Hammes ◽  
Martin Hauer ◽  
Vincent van Karsbergen ◽  
Rainer Pfluger

A significant proportion of the total energy consumption in office buildings is attributable to lighting. Enhancements in energy efficiency are currently achieved through strategies to reduce artificial lighting by intelligent daylight utilization. Control strategies in the field of daylighting and artificial lighting are mostly rule-based and focus either on comfort aspects or energy objectives. This paper aims to provide an overview of published scientific literature on enhanced control strategies, in which new control approaches are critically analysed regarding the fulfilment of energy efficiency targets and comfort criteria simultaneously. For this purpose, subject-specific review articles from the period between 2015 and 2020 and their research sources from as far back as 1978 are analysed. Results show clearly that building controls increasingly need to address multiple trades to achieve a maximum improvement in user comfort and energy efficiency. User acceptance can be highlighted as a decisive factor in achieving targeted system efficiencies, which are highly determined by the ability of active user interaction in the automatic control system. The future trend is moving towards decentralized control concepts including appropriate occupancy detection and space zoning. Simulation-based controls and learning systems are identified as appropriate methods that can play a decisive role in reducing building energy demand through integral control concepts.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3311
Author(s):  
Víctor Pérez-Andreu ◽  
Carolina Aparicio-Fernández ◽  
José-Luis Vivancos ◽  
Javier Cárcel-Carrasco

The number of buildings renovated following the introduction of European energy-efficiency policy represents a small number of buildings in Spain. So, the main Spanish building stock needs an urgent energy renovation. Using passive strategies is essential, and thermal characterization and predictive tests of the energy-efficiency improvements achieving acceptable levels of comfort for their users are urgently necessary. This study analyzes the energy performance and thermal comfort of the users in a typical Mediterranean dwelling house. A transient simulation has been used to acquire the scope of Spanish standards for its energy rehabilitation, taking into account standard comfort conditions. The work is based on thermal monitoring of the building and a numerical validated model developed in TRNSYS. Energy demands for different models have been calculated considering different passive constructive measures combined with real wind site conditions and the behavior of users related to natural ventilation. This methodology has given us the necessary information to decide the best solution in relation to energy demand and facility of implementation. The thermal comfort for different models is not directly related to energy demand and has allowed checking when and where the measures need to be done.


Sign in / Sign up

Export Citation Format

Share Document