Tribological Investigation of Nano Composite Coated Titanium Alloy Surfaces under Unidirectional Sliding

2012 ◽  
Vol 622-623 ◽  
pp. 787-790
Author(s):  
Prem Ananth Muthuvel ◽  
Rajagopal Ramesh

Industrial application of sliding components required to improve the tribological properties by increasing the surface hardness, friction and wear resistance. Modern modification of surface layers for friction applications combines surface texturing and filling of textured layers by wear resistant coatings of various compositions to improve its functional aspect and enhanced service life. Texturing of contact surfaces has a remarkable influence on their tribological properties, especially in the effect of wear and friction. This work proposes the coating of nano sized Titanium Aluminum Nitride (TiAlN) by Magnetron Sputtering-Physical Vapour Deposition (PVD) on the Titanium alloy (6Al-4V) substrate and study the performance of the coated surfaces by pin on disc tribometer. Two kinds of substrates were prepared one is the lapped surface and the other one is the textured surface by Laser beam machining. The Tribological performance of the wear resistant coatings on lapped and textured surfaces was experimentally investigated under various normal load conditions and the results were compared. Critical parameters such as friction coefficient, wear rate, wear volume, wear morphology and micro wear mechanism were investigated in this work. The coating surfaces and wear scars were evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDAX). The results showed that the TiAlN coating on textured surfaces exhibited lower friction coefficient and wear rate than the TiAlN coating on lapped surfaces under same testing conditions.

2017 ◽  
Vol 749 ◽  
pp. 241-245 ◽  
Author(s):  
Hatsuhiko Usami ◽  
Toshiki Sato ◽  
Yasuyuki Kanda ◽  
Satoru Nishio

Tribological properties of textured surfaces fabricated using a discontinuous microcutting process were investigated. Aluminum cast alloy (AC8A) discs were used for the specimens. The texturing process was carried out using a CNC machining center with a cutting edge with a novel geometry. The resulting surface morphology consisted of micro dimples with a diameter of 200-300 μm and a depth of 5-10 μm, with controlled area fractions of 10 and 40% and a top region finished with a milling cut. The tribological properties were evaluated using a ring-on-disc type testing apparatus under lubricated conditions, and showed that the friction coefficient of the textured surfaces was low and stable from the beginning of the experiment. A dependence of the friction coefficient on the area fraction was also found. Further reductions in the friction coefficient were achieved on a textured surface with a polished top region. It can be concluded that the proposed discontinuous micro cutting process is an effective means of fabricating a micro texture for the reduction and stabilization of frictional resistance.


Author(s):  
Xianghua Zhan ◽  
Peng Yi ◽  
Yancong Liu ◽  
Peifa Xiao ◽  
Xiaoye Zhu ◽  
...  

Textural morphology is an important factor influencing dry friction, and few studies have been conducted regarding the effects of single- and multi-shape textures on dry tribological properties. In this work, six types of textures including single- and multi-shape textures were produced on 40Cr steel samples by using a nanosecond laser. Reciprocating sliding tests under dry friction were conducted using a pin-on-disc friction tester. The influences of textured surfaces with different textures on tribological properties were investigated. Results showed that tribological properties were affected by different textural morphologies. The dimple-textured surface had the highest friction coefficient, followed by the groove-textured surface. The sinusoidal-textured surface had the lowest friction coefficient. The friction coefficients of multi-shape textured surfaces were lower than those of non-textured surfaces but higher than those of sinusoidal-textured surfaces. The wear properties of the tested surfaces were consistent with the friction-coefficient results. The sinusoidal- and sinusoidal–groove-textured surfaces can be considered as the optimum choices for dry reciprocating friction.


2013 ◽  
Vol 440 ◽  
pp. 37-41 ◽  
Author(s):  
R. Suresh ◽  
P. Shruthi ◽  
R. Sunil Kumar ◽  
J. Siva ◽  
M. Prem Ananth ◽  
...  

This work proposes the investigation of nanosized Titanium Aluminum Nitride (TiAlN) on the Stainless Steel (316L) substrate. A chromium interlayer has been applied over the modified surface which will act as an interlayer between the substrate and hard composite coating. The composite coating was prepared by Magnetron Sputtered-Physical Vapour Deposition (PVD) on chromium coated lapped and textured surfaces of stainless steel substrate. Scratch test was performed to characterize the adherence of the coatings on the substrate. TiAlN surface coating over the textured surface exhibits higher adherence than the lapped surface coating surface. The tribological performance of the wear resistant coatings on lapped and textured surfaces was experimentally investigated by pin on disc tribometer at dry sliding contact conditions under various normal loads. The testing results were compared and the results showed that TiAlN coating on textured surfaces exhibited lower friction coefficient and wear rate than lapped coating surfaces under same testing conditions. Sliding wear characteristics such as coefficient of friction and specific wear rate were investigated.


Author(s):  
Keisuke Hara ◽  
Hiromi Isobe

Abstract Tribological properties such as lubrication, friction and wear resistance are important to improve machine operating efficiency, machine performances and machine life. To improve tribological properties of sliding surface, scraping is available. Scraping fabricates many small depression on target surface evenly, the depression will function oil hole which promote lubrication of flat bearing surface. Many researchers have reported the surface texturing method which aim is similar to scraping. For example, the techniques fast tool servo turning with diamond insert tool and turn mill processing by dual spindle turning center were reported to fabricate periodically micro dimple. However, these techniques employ expensive high precision machine tools. This paper introduces a more cheaply and rapidly surface texturing technique which employs ultrasonic vibration turning to obtain low friction surface and improve tribological properties. In ultrasonic turning, cutting tool tip is vibrated in principal direction and radial direction simultaneously origin from poisons deformation of ultrasonic transducer. The radial direction tool vibration functions to squeeze workpiece surface in workpiece radial direction periodically, textured surface will be obtained. The results of ultrasonic turning experiments, textured surfaces were obtained. In order to evaluate the tribological performance of the turned surface, friction coefficient between stainless steel pin and turned surface were measured under oil dipping condition. It was confirmed that friction coefficient of ultrasonic turned surface is drastically reduced compared with ordinary turned surface. And proposed technique is available to perform surface texturing for several materials.


Author(s):  
Ying Yan ◽  
Xuelin Lei ◽  
Yun He

The effect of nanoscale surface texture on the frictional and wear performances of nanocrystalline diamond films under water-lubricating conditions were comparatively investigated using a reciprocating ball-on-flat tribometer. Although the untreated nanocrystalline diamond film shows a stable frictional state with an average friction coefficient of 0.26, the subsequent textured films show a beneficial effect on rapidly reducing the friction coefficient, which decreased to a stable value of 0.1. Furthermore, compared with the nanocrystalline diamond coating, the textured films showed a large decreasing rate of the corresponding ball wear rate from 4.16 × 10−3 to 1.15 × 10−3 mm3/N/m. This is due to the fact that the hydrodynamic fluid film composed of water and debris can provide a good lubrication environment, so the entire friction process has reached the state of fluid lubrication. Meanwhile, the surface texture can greatly improve the hydrophilicity of the diamond films, and as the texture density increases, the water contact angle decreases from 94.75° of the nanocrystalline diamond film to 78.5° of the textured films. The proper textured diamond film (NCD90) exhibits superior tribological properties among all tested diamond films, such as short run-in period, low coefficient of friction, and wear rate.


2010 ◽  
Vol 654-656 ◽  
pp. 2763-2766 ◽  
Author(s):  
Li Wen Mu ◽  
Xin Feng ◽  
Yi Jun Shi ◽  
Huai Yuan Wang ◽  
Xiao Hua Lu

The tribological properties of polyimide (PI) composites reinforced with graphite or MoS2 sliding in liquid alkali and water as well as dry friction were investigated using a ring-on-ring tester. The results show that the friction coefficient (μ) and wear rate (W) for both graphite/PI and MoS2/PI composites in different liquid mediums are μdry>μwater >μalkali and Wwater>Wdry >Walkali. Results also indicate that the friction coefficient and wear rate of the PI composites filled with different solid lubricants are μMoS2 >μgraphite and W MoS2 >Wgraphite in different liquid mediums. In addition, the hydrophobic inorganic fillers are fit for the reinforcement of polymer-based composites sliding in liquid mediums. It is also concluded from the authors’ work that the wear rate and friction coefficient of polymer-based (such as PI, PTFE) composites in the alkali lubricated conditions is lowest among all the friction conditions. This may be attributed to the ionic hydration in the alkaline solution.


2011 ◽  
Vol 189-193 ◽  
pp. 3633-3639
Author(s):  
Ming Der Jean ◽  
Yih Hwang Yang ◽  
Tzu Hsuan Chien

This study presented the desirability function based on Taguchi designed experiments to solve multiple responses statistical optimal problems for the tungsten carbide/cobalt (WC-Co) coatings of high-velocity-oxygen-fuel (HVOF) processes. The eight control factors based on L18 arrays were conducted and the multi-responses of wear-resistant coatings such as hardness, deposited thickness and wear rate were evaluated simultaneously in the desirability-based experiments. Based on desirability analysis, the optimal settings have been identified, and the impacts of control factors are determined by analysis of variance on the multi-responses. Further, a confirmation run was conducted to validate the tests. Experimental results have shown that the hardness increased by 16.61% and the deposited thickness improved by 10.50%, while the wear rate decreased by 34.03%. It was clear that confirmation tests are greatly improved by way of the desirability-based multi-responses on HVOF WC-Co experiments, and these findings achieved the desired values on wear-resistant coatings. The proposed procedure was applied at HVOF sprayed WC-Co experiments, and the implementation results demonstrated its feasibility and effectiveness to maximize hardness, make a target of deposited thickness value and minimize wear rate by a HVOF.


2018 ◽  
Vol 18 (18) ◽  
pp. 18-23 ◽  
Author(s):  
Sandra Veličković ◽  
Slavica Miladinović ◽  
Blaža Stojanović ◽  
Ružica R. Nikolić ◽  
Branislav Hadzima ◽  
...  

Abstract Hybrid materials with the metal matrix are important engineering materials due to their outstanding mechanical and tribological properties. Here are presented selected tribological properties of the hybrid composites with the matrix made of aluminum alloy and reinforced by the silicon carbide and graphite particles. The tribological characteristics of such materials are superior to characteristics of the matrix – the aluminum alloy, as well as to characteristics of the classical metal-matrix composites with a single reinforcing material. Those characteristics depend on the volume fractions of the reinforcing components, sizes of the reinforcing particles, as well as on the fabrication process of the hybrid composites. The considered tribological characteristics are the friction coefficient and the wear rate as functions of the load levels and the volume fractions of the graphite and the SiC particles. The wear rate increases with increase of the load and the Gr particles content and with reduction of the SiC particles content. The friction coefficient increases with the load, as well as with the SiC particles content increase.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jinlong Shen ◽  
Tong Zhang ◽  
Jimin Xu ◽  
Xiaojun LIU ◽  
Kun Liu

Purpose This paper aims to improve the tribological performance of grease-lubricated spherical plain bearings (SPBs) under heavy load, dimple-type textures were prepared by laser on the outer surface of the inner ring. The influence of roughness parameters of a textured surface on reducing friction coefficient and temperature rise was also explored. Design/methodology/approach This study adopts a laser processing method to fabricate dimple-type textures. Three-dimensional roughness parameters were used to characterize the textured surfaces. The friction coefficients of five SPBs with surface texture and one original commercially available SPB without surface texture under different nominal loads were measured on a self-established test rig. The data of temperature rise were obtained by nine embedded thermal couples. Findings The results indicate that SPBs with textures generally exhibit lower friction coefficients than the original SPB without textures. The dimple depth has a significant influence on improving the tribological performance, which coincides with the analysis by surface roughness parameters. A textured surface with negative Ssk and high Vvc has the minimum temperature rise. Originality/value As it is too difficult to arrange sensors into heavy-load SPBs, there are few reports about the temperature characteristics. Through nine embedded thermal couples, the distribution of temperature rise on the inner ring of SPBs was given in this study. The positive effect of surface texture on reducing temperature rise and friction coefficient was verified, which is beneficial for the design of heavy-load SPBs.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1854
Author(s):  
Fei-xia Zhang ◽  
Yan-qiu Chu ◽  
Chang-sheng Li

This paper presents a facile and effective method for preparing Ni/NbSe2 composites in order to improve the wettability of NbSe2 and copper matrix, which is helpful in enhancing the friction-reducing and anti-wear properties of copper-based composites. The powder metallurgy (P/M) technique was used to fabricate copper-based composites with different weight fractions of Ni/NbSe2, and tribological properties of composites were evaluated by using a ball-on-disk friction-and-wear tester. Results indicated that tribological properties of copper-based composites were improved by the addition of Ni/NbSe2. In particular, copper-based composites containing 15 wt.% Ni/NbSe2 showed the lowest friction coefficient (0.16) and wear rate (4.1 × 10−5 mm3·N−1·m−1) among all composites.


Sign in / Sign up

Export Citation Format

Share Document