Crashworthiness Analysis and Optimization of Thin-Walled Square Tube with Pyramidal Ripples Based on Mechanics Properties

2012 ◽  
Vol 625 ◽  
pp. 69-74
Author(s):  
Xiao Guang Hu ◽  
Jing Bo Yang

Thin-walled structure absorbs most impact kinetic energy during collision accident,and they are widely used as energy-absorbing element. In order to improve crashworthiness of them, regular pyramidal ripple is added on the thin-walled square tube’s surface. Explicit finite element technology is applied to simulate the behavior of the tube under axial impact load. Simulation data was delt with by Response Surface Method to form a function of variables and response,and the new structure was optimized. Research results show that, the thin-walled square tube with pyramidal ripples can improve controllable of structure deformation obviously and Optimized structure can absorb and dissipate much more impact kinetic energy.

2011 ◽  
Vol 462-463 ◽  
pp. 1218-1223
Author(s):  
Faris Tarlochan

Improving crashworthiness of vehicles is considered to be one of the main concerns in traffic safety. The study focused on new designs that can be incorporated into existing vehicles. The paper presents a crashworthiness design of a bi-tubular thin walled column for different dimension profiles. To formulate the complex crashworthiness design problem, the response surface method (RSM) was utilized. The design of experiments of the factorial design is used to construct the response surface for the specific energy absorption (SEA). This surface was optimized for SEA. Results from a finite element analysis of elastic plastic square bi-tubular steel tubes subjected to dynamic axial impact load are reported. The bi-tubular design has shown good potential as an efficient energy absorber in comparison to existing conventional energy absorbing structures.


2018 ◽  
Vol 12 (1) ◽  
pp. 54-59 ◽  
Author(s):  
Maria Kotełko ◽  
Mirosław Ferdynus ◽  
Jacek Jankowski

AbstractIn the paper the study of different crashworthiness indicators used to evaluate energy absorbing effectiveness of thin-walled energy absorbers is presented. Several different indicators are used to assess an effectiveness of two types of absorbing structures, namely thin-walled prismatic column with flaws and thin-walled prismatic frustum (hollow or foam filled) in both cases subjected to axial compressive impact load. The indicators are calculated for different materials and different geometrical parameters. The problem of selection of the most appropriate and general indicators is discussed.


2018 ◽  
Vol 38 (1) ◽  
pp. 71-74
Author(s):  
Tomasz Ireneusz Jedliński ◽  
Jacek Buśkiewicz ◽  
Paweł Fritzkowski

Abstract Apart from the strength requirements, modern lighting pole designs have to meet a number of safety requirements in the event of collisions. The paper compares the experimental tests performed at the collision test track according to EN 12767 with the results of the numerical analysis carried out in Ansys LS-DYNA. The objective of the work is to prepare a new structure of a thin-walled lighting pole of steel which minimizes absorption of the kinetic energy of the vehicle and, simultaneously, its production costs are comparable to those of a standard pole. The tests were carried out at an impact speed of 100 km/h.


2011 ◽  
Vol 63-64 ◽  
pp. 655-658
Author(s):  
Qi Hao ◽  
Sheng Jun Wu

Explicit finite element method is adopted to simulate the crashworthiness performance of four types of typical thin—walled structures used in vehicle by software LS-DYNA. The structures with the same material、area and length are crash by a rigid body with 40km/h in10ms, The crash processes and crashworthiness characters are analyzed by a series crash parameters: deformation energy with unit displacement, impact force and deceleration to look for the optimal shape with crashworthiness. With comparing, the double caps section has ascendant performance than the others. The simulating methods of welded-joints are discussed to analysis their effects on crashworthiness simulation.


2021 ◽  
Author(s):  
Qiang Zhong ◽  
De-yu Wang

Abstract Dynamic capacity is totally different from quasi-static capacity of ship structural components, although most ultimate strength analyses at present by researchers are performed under quasi-static conditions. To investigate the dynamic ultimate strength characteristics, the dynamic ultimate strength analyses of stiffened plates subjected to impact load were studied based on a 3-D nonlinear explicit finite element method (FEM) in this paper. The impact load in the present work is characterized as a half-sine function. A series of nonlinear finite element analyses are carried out using Budiansky-Roth (B-R) criterion. The influence of impact durations, model ranges, boundary conditions, initial imperfections and impact loads on the dynamic ultimate strength of stiffened plates are discussed. In addition, the ultimate strength of stiffened plates under the in-plane impact combined with lateral pressure was also calculated, which shows lateral pressure has a negligible effect on the dynamic ultimate strength of stiffened plates subjected to the impact load with short durations. Other important conclusions can be obtained from this paper, which are useful insights for the development of ultimate strength theory of ship structures and lay a good foundation for the study of dynamic ultimate strength in the future.


2017 ◽  
Vol 865 ◽  
pp. 612-618 ◽  
Author(s):  
M. Malawat ◽  
Jos Istiyanto ◽  
D.A. Sumarsono

Crush initiators are the weakest points to reduce initial peak load force with significant energy absorption ability. The objective of this paper is to study the effects of square tube thickness and crush initiators position for impact energy absorber (IEA) performance on thin-walled square tubes. Two square tubes having thickness about 0.6 mm (specimen code A) and 1 mm (specimen Code C) were tested under dynamic load. The crushing initiator is designed around the shape of the tube wall and has eight holes with a fixed diameter of 6.5 mm. In the experiment, the crushing initiator was determined at 5 different locations on the specimen wall. These locations are 10 mm, 20 mm. 30 mm, 40 mm, and 50 mm measured from the initial collision position of the specimen tested. The impact load mass was about 80 kg and had a drop height of about 1.5 m. Using the simulation program of the LabVIEW Professional Development System 2011 and National Instrument (NI) 9234 software equipped with data acquisition hardware NI cDAQ-9174 the signal from the load cell was sent to a computer. By controlling the thickness of the thin-walled square tube, the peak loading force can be decreased by approximately 56.75% and energy absorption ability of IEA can be increased approximately to 11.83%. By using different thin-walled square tube can produce different best crush initiators position with the lowest peak load force.


2018 ◽  
Vol 1 (2) ◽  
pp. 93-96 ◽  
Author(s):  
Tünde Kovács ◽  
Zoltán Nyikes ◽  
Lucia Figuli

Abstract In the current century, building protection is very important in the face of terrorist attacks. The old buildings in Europe are not sufficiently resilient to the loads produced by blasts. We still do not fully understand the effects of different explosives on buildings and human bodies. [1–3] Computing blast loads are different from that of traditional loads and the material selection rules for this type of impact load are diverse. Historical and old buildings cannot be protected simply by new walls and fences. New ways need to be found to improve a building’s resistance to the effects of a blast. It requires sufficiently thin yet strong retrofitted materials in order to reinforce a building’s walls [4–6].


Author(s):  
Sean Jenson ◽  
Muhammad Ali ◽  
Khairul Alam

Abstract Thin walled axial members are typically used in automobiles’ side and front chassis to improve crashworthiness of vehicles. Extensive work has been done in exploring energy absorbing characteristics of thin walled structural members under axial compressive loading. The present study is a continuation of the work presented earlier on evaluating the effects of inclusion of functionally graded cellular structures in thin walled members under axial compressive loading. A compact functionally graded composite cellular core was introduced inside a cross tube with side length and wall thickness of 25.4 mm and 3.048 mm, respectively. The parameters governing the energy absorbing characteristics such as deformation or collapsing modes, crushing/ reactive force, plateau stress level, and energy curves, were evaluated. The results showed that the inclusion of composite graded cellular structure increased the energy absorption capacity of the cross tube significantly. The composite graded structure underwent progressive stepwise, layer by layer, crushing mode and provided lateral stability to the cross tube thus delaying local tube wall collapse and promoting large localized folds on the tube’s periphery as compared to highly localized and compact deformation modes that were observed in the empty cross tube under axial compressive loading. The variation in deformation mode resulted in enhanced stiffness of the composite structure, and therefore, high energy absorption by the structure. This aspect has a potential to be exploited to improve the crashworthiness of automobile structures.


Sign in / Sign up

Export Citation Format

Share Document