Catalytic Synthesis of N-Butyl Methacrylate with H4SiW6Mo6O40/SiO2

2013 ◽  
Vol 631-632 ◽  
pp. 135-139 ◽  
Author(s):  
Li Yu ◽  
Yong Kui Huang ◽  
Guo Bin Duan ◽  
Shui Jin Yang

A novel environmental friendly catalyst, H4SiW6Mo6O40/SiO2was synthesized by a sol-gel technique, and characterized by FT-IR and XRD. Catalytic application of the catalyst for synthesis of n-butyl methacrylate was investigated. The variation of different reaction parameters were studied by orthogonal design. Under optimized conditions, that is, molar ratio of methacrylic acid to n-butanol is 1:1.7, catalyst dosage is 0.75 %, volume of cyclohexane is 12 mL and the reaction time is 2.5 h, the yield of n-butyl methacrylate reaches 85.3%. The results reveal that the H4SiW6Mo6O40/SiO2O2 catalysis is an execellent catalyst for synthesis of n-butyl methacrylate. Introduction

2011 ◽  
Vol 284-286 ◽  
pp. 2374-2379 ◽  
Author(s):  
Shui Jin Yang ◽  
Yong Kui Huang ◽  
Li Yu

A novel catalyst, H4SiW12O40/SiO2was synthesized by a sol-gel technique, and characterized by FT-IR and XRD. Catalytic application of H4SiW12O40/SiO2for synthesis of acetals and ketals were tested. The variation of different reaction parameters, such as mole ratio of aldehyde/ketone to alcohols, catalyst dosage and reaction time on the yield of acetals and ketals were also studied. The results reveal that the H4SiW12O40/SiO2catalysis generally results in good yields of acetals and ketals under mild reaction conditions and the high activity and stability of the catalyst is well retained on recycling.


2012 ◽  
Vol 430-432 ◽  
pp. 289-292
Author(s):  
Shui Jin Yang ◽  
Li Yu ◽  
Yong Kui Huang ◽  
Guo Bin Duan

Heterogeneous acid catalyst, H4SiW6Mo6O40/SiO2 was synthesized by a sol-gel technique. Catalytic application of the catalyst for synthesis of acetals and ketals were tested. The variation of different reaction parameters on the yield of acetals and ketals were also studied. The yields of acetals and ketals can reach 80.0%~96.9% at the optimized conditions. The high activity and stability of the catalyst is well retained after 4 runs. The results reveal that the H4SiW6Mo6O40/SiO2 catalysis is a novel, effective and reusable catalyst for synthesizing actetals and ketals.


1996 ◽  
Vol 459 ◽  
Author(s):  
E. Ching-Prado ◽  
W. Pérez ◽  
A. Reynés-Figueroa ◽  
R. S. Katiyar ◽  
D. Ravichandran ◽  
...  

ABSTRACTThin films of SrBi2Nb2O9 (SBN) with thicknesses of 0.1, 0.2, and 0.4 μ were grown by Sol-gel technique on silicon, and annealed at 650°C. The SBN films were investigated by Raman scatering for the first time. Raman spectra in some of the samples present bands around 60, 167, 196, 222, 302, 451, 560, 771, 837, and 863 cm−1, which correspond to the SBN formation. The study indicates that the films are inhomogeneous, and only in samples with thicknesses 0.4 μ the SBN material was found in some places. The prominent Raman band around 870 cm−1, which is the A1g mode of the orthorhombic symmetry, is assigned to the symmetric stretching of the NbO6 octahedrals. The frequency of this band is found to shift in different places in the same sample, as well as from sample to sample. The frequency shifts and the width of the Raman bands are discussed in term of ions in non-equilibrium positions. FT-IR spectra reveal a sharp peak at 1260 cm−1, and two broad bands around 995 and 772 cm−1. The bandwidths of the latter two bands are believed to be associated with the presence of a high degree of defects in the films. The experimental results of the SBN films are compared with those obtained in SBT (T=Ta) films. X-ray diffraction and SEM techniques are also used for the structural characterization.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Abdussalam Salhin Mohamad Ali ◽  
Norfarhah Abdul Razak ◽  
Ismail Ab Rahman

Sorbent materials based on a hydrazone Schiff base compound, C14H11BrN4O4, were prepared either by immobilizing the ligand into sol-gel (SG1) or bonding to silica (SG2). The sorbent materials were characterized by FT-IR, EDX, SEM, TEM, and TGA. The sorption characteristics of a matrix of eight transition metal ions (Ag+, Cu2+, Co2+, Ni2+, Fe3+, Pb2+, Zn2+, and Mn2+) using batch method were studied. Several key parameters that affected the extraction efficiency such as pH, contact time, metal ions concentration, and gel size (for SGl) were investigated and optimized. Under the optimized conditions, the physically immobilized hydrazone sorbent (SG1) exhibits highest selectivity towards Ag+ions, while the chemically bonded hydrazone sorbent (SG2) exhibits high extraction for all metal ions tested. However, for practical applications such as the removal and preconcentration of Ag+, the physically immobilized sorbent (SG1) is preferred.


2012 ◽  
Vol 9 (2) ◽  
pp. 659-668 ◽  
Author(s):  
A. Elsagh

The aim of the present research was optimization of practical conditions of the sol-gel synthesis. In so doing, silica particles were synthesized using sol-gel method and their size and morphology were investigated by use of SEM and TEM images. The effect of changing molar ratio of reactive including acids and silica pre-matter on the particles' morphology and size was studied. Also, acid type and silica pre-matter used in reaction was examined and the result product of the reaction were investigated in the presence of several acids and two types of silica pre-matter. The reaction time was studied as a very important factor in products' digestion phase which plays a significant role in determining particles’ size and rate of cracking products. Finally, in optimized conditions 50-80 nm diameter nanostructures were synthesized. These products can be used as drug delivery systems.


2021 ◽  
Vol 25 (7) ◽  
pp. 34-48
Author(s):  
Himani Sharma ◽  
Rashmi Tyagi

γ-octyl aspartate has been synthesized with 46.2% yield. The optimized conditions for esterification of aspartic acid and n-octanol are 24 hours duration and 1:1 molar ratio of reactants (aspartic acid: n-octanol). FT-IR, 1H NMR and CHNS element analysis techniques are used for structure elucidation of γ -octyl aspartate. Surface/ interfacial studies, micellization aspects, thermodynamic parameters, biodegradability and binary salt behaviour of sodium γ-octyl aspartate have been studied. The CMC of synthesized surfactants was 0.0078 mol/L, whereas minimum surface area per surfactant molecule was calculated as 29.49 Å2m2; calculated aggregation number was 34 and micelle radius (r) found to be 1.40 nm. The degree of counter-ion dissociation (α) was determined to be 0.86. Thermodynamic parameter - standard free energy of adsorption (ΔG0ads) was calculated as -18.70 kJ/mol. The shape of micelle of synthesized surfactant was noticed to be spherical but during binary studies in some cases, it was found to be cylindrical. OECD and Winkler’s method were used to determine biodegradation of sodium γ-octyl aspartate found to be 95.1 %.


2007 ◽  
Vol 121-123 ◽  
pp. 1253-1256 ◽  
Author(s):  
Chun Hong Zhang ◽  
Z.Q. Zhang ◽  
H.L. Cao

A novel epoxy/SiO2 hybrid sizing for carbon fiber surface was prepared through sol-gel technique, the structure of the sizing were analyzed, and the effects of the sizing on mechanical properties of carbon fiber composites were also investigated. The analyses by FT-IR and SEM indicated that epoxy/SiO2 hybrid sizing was prepared successfully, SiO2 particles dispersed in the hybrid sizing film homogeneously with nanoscale. The analyses on interlaminar shear strength (ILSS) and impact properties of composites showed that the epoxy/nano-SiO2 hybrid sizing increased ILSS and improved impact properties obviously at the same time.


2012 ◽  
Vol 531 ◽  
pp. 312-315 ◽  
Author(s):  
Ming Bo Xu ◽  
Jie Yang ◽  
Yong Kui Huang ◽  
Shui Jin Yang

A novel environmental friendly catalyst,H4SiW12O40/MCM-48, was prepared by impregnation method. The catalysts were characterized by means of XRD and FT-IR. The synthesis of butyraldehyde glycol acetal catalyzed by H4SiW12O40/MCM-48 was studied with butyraldehyde and glycol as reactants. H4SiW12O40/MCM-48 was an excellent catalyst for the synthesizing butyraldehyde glycol acetal and Keggin structure of H4SiW12O40 kept unchanged after being impregnated on surface of the molecular sieve support. Effects of n(butyraldehyde)∶n(glycol), catalyst dosage, cyclohexane(water-stripped reagent ) and reaction time on yields of the product were investigated. The optimum conditions had been found, that is, molar ratio of butyraldehyde to glycol is1:1.4,mass ratio of catalyst used to the reactants is 0.4% and reaction time is 45 min. Under these conditions, the yield of butyraldehyde glycol acetal can reach 73.3%.


2014 ◽  
Vol 881-883 ◽  
pp. 986-989
Author(s):  
Fa Qiu Hou ◽  
Ning Qing ◽  
Yong Jun Chen

nano-SiO2 modified core-shell polyacrylate composite emulsion was synthesized by seeded semi-continuous starved pre-emulsion polymerization and sol-gel technique. The influence of 3-methacryloxypropyltrimethoxysilane(KH-570), tetraethoxysilane(TEOS) on the properties of emulsion and film were studied. The SiO2/silicone polyacrylate composite latex and the resultant films were characterized by fourier transform infrared spectroscopy(FT-IR), differential scanning calorimeter(DSC), thermogravimetric analysis(TGA), water contact angle goniometer (WCAG). The results showed that organic silicon and nano-SiO2 were effectively grafted to the polyacrylate molecular chain. We can observed there are two glass transition temperatures (Tg) in the DSC curve. The water contact angle (WCA) on the PAE film and SSPAE film separately attained 62.5°and 85.5°.


2014 ◽  
Vol 875-877 ◽  
pp. 251-256 ◽  
Author(s):  
Lin Sun ◽  
Rong Shao ◽  
Lan Qin Tang ◽  
Zhi Dong Chen

Ag/ZnO nanocomposite photocatalysts with high photocatalytic performance were successfully synthesized via a facile sol-gel method. The prepared Ag/ZnO products were characterized by XRD, SEM, EDS, FT-IR, BET surface area, TG and DSC. Photodegradation experiments of the samples were carried out by choosing Methylene Blue (MB) as a model target under UV irradiation with homemade photocatalytic apparatus. Among these products, when the molar ratio of Ag to ZnO was fixed at 0.07 and the calcination temperature was around 450 °C, the obtained samples exhibited the highest photocatalytic activity.


Sign in / Sign up

Export Citation Format

Share Document