Study on the Erosion Wear Behaviors of the PMMA Plates Impacted by Air Flow Containing Sands

2013 ◽  
Vol 631-632 ◽  
pp. 366-370
Author(s):  
Ting Xie ◽  
Gang Liu ◽  
Peng Fei Wang ◽  
Yan Guo Yin

The polymethymethacrylate (PMMA) plate was adopted as the test samples. The effects of impact angle, impact velocity, sand size on the erosion wear of the PMMA plates were experimentally investigated. The erosion mechanisms were also analyzed. The results showed that, the erosion volume increased nonlinearly with the increase of impact velocity, the inflection point appeared at around 13 m/s, and then the erosion volume increased rapidly. The erosion volume decreased nonlinearly as the impact angle increased. In our experiments, under the impact angle less than 60°, the smaller sand size could result in higher erosion wear. However, at 90°, the erosion volume by larger sands produced higher erosion. In fact, the erosion mechanism depends on the impact angle, at small impact angles, the main erosion mechanism is micro-cutting, and the erosion mechanism will mainly be impacting fatigue at large impact angles. At the medium impact angles, the erosion mechanism is the combination of the micro-cutting and impacting.

2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Y. M. Abd-Elrhman ◽  
A. Abouel-Kasem ◽  
S. M. Ahmed ◽  
K. M. Emara

In the present work, stepwise erosion technique was carried out to investigate in detail the influence of impact angle on the erosion process of AISI 5117 steel. The number of impact sites and their morphologies at different impact angles were investigated using scanning electron microscope (SEM) examination and image analysis. The tests were carried out with particle concentration of 1 wt. %, and the impact velocity of slurry stream was 15 m/s. Silica sand—which has a nominal size range of 250–355 μm—was used as an erodent, using whirling-arm test rig. The results have shown that the number of craters, as expected, increases with the increase in the mass of erodent for all impact angles and this number decreases with the increase of the impact angle. In addition, the counted number of craters is larger than the calculated number of particles at any stage for all impact angles. This may be explained by the effect of the rebound effect of particles, the irregular shape for these particles, and particle fragmentation. The effect of impact angle based on the impact crater shape can be divided into two regions; the first region for θ ≤ 60 deg and the second region for θ ≥ 75 deg. The shape of the craters is related to the dominant erosion mechanisms of plowing and microcutting in the first region and indentation and lip extrusion in the second region. In the first region, the length of the tracks decreases with the increase of impact angle. The calculated size ranges are from few micrometers to 100 μm for the first region and to 50 μm in the second region. Chipping of the former impact sites by subsequent impact particles plays an important role in developing erosion.


1978 ◽  
Author(s):  
Max Freedman

Erosion tests were run to obtain data for designing a water-cooled gas turbine collection shroud. All tests utilized a coherent stream of water ejected from a static nozzle against stationary small block specimens. Twenty-one tests were run with aluminum specimens and 16 more tests with other materials. The impact velocity was varied from 165 to 270 m/s (540 to 890 fps). The impact angle was varied from 10 to 90 deg. The mass loss rate results generally show four erosion regions, which are consistent with the literature. A correlation between regions two and four was found. Aluminum specimen erosion rate was found to be unexpectedly high with impact angles of 10 deg and moderate-to-high impact velocity. No report of previous liquid erosion work at impact angles less than 30 deg was found; since it is expected that water-cooled gas turbines will operate at impact angles of about 15 deg, erosion in this low impact angle region should be studied. If the correlation between erosion regions two and four can be quantized, then very short-time tests could be used to predict long-term erosion at minimal cost.


2011 ◽  
Vol 492 ◽  
pp. 43-46
Author(s):  
Xiu Fang Wang ◽  
Yi Wang Bao ◽  
Yan Qiu ◽  
Xiao Gen Liu ◽  
Yuan Tian

Spherical impact indentation tests with different impact angles (90°, 60°, 45°, and 30°) was carried out to understand the effect of impact angles on damage degree of cement clinker. A linear rail which can adjust angle to alter impact velocity was used to guide the slipping impact head to impact the sample. The different steel wedge was used to change the impact angle. It is found that the area of damage surface for cement clinker is most serious the peak impact force for surface damage decreases but the contact indentation becomes longer with decreasing impact angle when the impact angle is 45°. Under almost the same impact velocity, the smaller the impact angle, the higher the impulse, the longer contact time, and the peak impact force of 45° is maximum.


Author(s):  
Tanusree Bera ◽  
Ved Prakash ◽  
Samir K Acharya

In this article, a new metal–matrix composite was developed with fly ash (an industrial waste from petroleum industries) as reinforcement and aluminium metal (A357) as a matrix by squeeze casting technique. This study was concentrated on the processing of the composites with different weight percentage ranging from 0 to 10 wt.% in a step of 2.5 each and also reported the erosion wear behaviour. Solid particle erosion of A357/fly ash composites was carried out with four velocities (48, 70, 82 and 109 m/s), at impact angles (30°, 45°, 60° and 90°), with silica as an abrasive particle at ambient temperature. The eroded surfaces were analysed by scanning electron microscopy. The results revealed that the impact velocity and impingement angle both affected the erosion wear behaviour of the composites. The erosion rate rises with an increase in impact velocity, irrespective of the change in impingement angle and weight percentage of the fly ash. The erosion mechanism studied for the composites is microploughing and microcutting.


2020 ◽  
Vol 143 (8) ◽  
Author(s):  
Kang Shu ◽  
Wen-Jian Wang ◽  
Enrico Meli ◽  
Hao-Hao Ding ◽  
Zhen-Yu Han ◽  
...  

Abstract Usually, rail materials are exactly affected by the erosion of windblown sand in the desert environment. For this reason, the influence of impact angle, particle velocity, and particle size on the erosion wear behavior of the U75V heat-treated rail steel, a material frequently employed in Chinese railways, were studied in this work. The results showed that, with increasing impact angle, the erosion rate increased between 15 deg and 45 deg, decreased between 45 deg and 75 deg, and then increased again between 75 deg and 90 deg. The highest erosion rate occurred at about 45 deg. When the particle velocity increased, the erosion rate increased approximately in a quadratic way. As the sand particle size increased, the erosion rate presented a decreasing trend. During the initial stage of erosion, shear craters, indentation craters, and ploughing craters were the main surface damage features. The shear craters predominated at the impact angle of 45 deg whereas the indentation craters predominated at 90 deg. During the steady-state of erosion, the rail damage was mainly composed of craters, platelets, and cracks. Both the length and depth of craters increased almost linearly with increasing particle velocity, whereas the increased rate of length was significantly higher than that of depth. The length and depth of craters increased with increasing particle size at 90 deg, whereas only the length increased with increasing particle size at 45 deg. The microstructure evolution and the formation mechanism of platelet at low impact angles were different from those at high impact angles. Platelet formation was the main erosion wear mechanism.


2014 ◽  
Vol 1049-1050 ◽  
pp. 167-170
Author(s):  
Bao Hui Guo

The solid particle erosion behaviors of TC4 Alloy were studied at different erosion angles. The results show that the erosion rate of TC4 alloy at impact angle 30o was higher than those at the impact angles of both 60o and 90o. At low impact angle, the erosion mechanism could be concluded as grinding erosion and furrow erosion. However, the erosion mechanism could be fatigue erosion at large impact angle.


2014 ◽  
Vol 894 ◽  
pp. 110-115 ◽  
Author(s):  
Guang Cun Wang ◽  
Jian Feng Li ◽  
Xiu Jie Jia ◽  
Zhao Ju Zhu ◽  
Qi Guo

To study the erosion behaviors and mechanism of impeller material FV520B in centrifugal compressor, the erosion experiments with polygonal alumina particles were carried out on the high-speed erosion testing system. Microstructure of the erosion zone was analyzed by SEM to reveal the erosion mechanism. An erosion model to calculate the erosion rate of FV520B was developed. The results showed that, FV520B exhibited the erosion characteristics of typical plastic materials, the highest erosion rate occurred at the impact angle of 24°, the lowest erosion rate occurred at normal impact angle. The velocity index at the impact angle 24° and 90° were 3.37 and 3.68, it grew as the impact angle increased. The erosion mechanism of FV520B was micro-cutting and deformation wear, at low impact angles, the erosion was dominated by micro-cutting wear, while at high impact angle greater than 60 °, the erosion was dominated by deformation wear. Also the predictions of the erosion model were in good agreement with the results of experiments, indicating that this model can be used to estimate the erosion rate of compressor impeller under different working conditions.


2015 ◽  
Vol 801 ◽  
pp. 25-32
Author(s):  
Ozdes Cermik ◽  
Hamid Ghaednia ◽  
Dan B. Marghitu

In the current study a flattening contact model, combined with a permanent deformation expression, has been analyzed for the oblique impact case. The model has been simulated for different initial conditions using MATLAB. The initial impact velocity used for the simulations ranges from 0.5 to 3 m/s. The results are compared theoretically for four different impact angles including 20, 45, 70, and 90 degrees. The contact force, the linear and the angular motion, the permanent deformation, and the coefficient of restitution have been analyzed. It is assumed that sliding occurs throughout the impact.


Author(s):  
Seunghun Lee ◽  
Dan B. Marghitu

In this paper, a compound pendulum impacting a granular media is studied and the influences of initial impact velocity and impact angle are examined. The resistance forces are studied as the sum of a dynamic frictional force (velocity dependent) and a static resistance force (depth dependent). The penetrating angle is increasing with initial impact velocity as expected. However, the stopping time is decreasing with initial impact velocity for all initial impact angles in our system.


2015 ◽  
Vol 2015 ◽  
pp. 1-31 ◽  
Author(s):  
Mohammad Asaduzzaman Chowdhury ◽  
Uttam Kumar Debnath ◽  
Dewan Muhammad Nuruzzaman ◽  
Md. Monirul Islam

The erosion characteristics of gunmetal have been evaluated practically at different operating conditions. Asymmetrical silica sand (SiO2) is taken into account as erodent within range of 300–600 μm. The impact velocity within 30–50 m/sec, impact angle 15–900, and stand off distance 15–25 mm are inspected as other relevant operating test conditions. The maximum level of erosion is obtained at impact angle 15° which indicates the ductile manner of the tested gunmetal. The higher the impact velocity, the higher the erosion rate as almost linear fashion is observed. Mass loss of gunmetal reduces with the increase of stand-off distance. A dimensional analysis, erosion efficiency (η), and relationship between friction and erosion indicate the prominent correlation. The test results are designated using Taguchi’s and ANOVA concept.S/Nratio indicates that there are 1.72% deviations that are estimated between predicted and experimental results. To elaborately analyze the results, ANN and GMDH methods are mentioned. After erosion process of tested composite, the damage propagation on surfaces is examined using SEM for the confirmation of possible nature of wear behavior. The elemental composition of eroded test samples at varying percentage of gunmetal is analyzed by EDX analysis.


Sign in / Sign up

Export Citation Format

Share Document