Stepwise Erosion as a Method for Investigating the Wear Mechanisms at Different Impact Angles in Slurry Erosion

2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Y. M. Abd-Elrhman ◽  
A. Abouel-Kasem ◽  
S. M. Ahmed ◽  
K. M. Emara

In the present work, stepwise erosion technique was carried out to investigate in detail the influence of impact angle on the erosion process of AISI 5117 steel. The number of impact sites and their morphologies at different impact angles were investigated using scanning electron microscope (SEM) examination and image analysis. The tests were carried out with particle concentration of 1 wt. %, and the impact velocity of slurry stream was 15 m/s. Silica sand—which has a nominal size range of 250–355 μm—was used as an erodent, using whirling-arm test rig. The results have shown that the number of craters, as expected, increases with the increase in the mass of erodent for all impact angles and this number decreases with the increase of the impact angle. In addition, the counted number of craters is larger than the calculated number of particles at any stage for all impact angles. This may be explained by the effect of the rebound effect of particles, the irregular shape for these particles, and particle fragmentation. The effect of impact angle based on the impact crater shape can be divided into two regions; the first region for θ ≤ 60 deg and the second region for θ ≥ 75 deg. The shape of the craters is related to the dominant erosion mechanisms of plowing and microcutting in the first region and indentation and lip extrusion in the second region. In the first region, the length of the tracks decreases with the increase of impact angle. The calculated size ranges are from few micrometers to 100 μm for the first region and to 50 μm in the second region. Chipping of the former impact sites by subsequent impact particles plays an important role in developing erosion.

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Y. M. Abd-Elrhman ◽  
A. Abouel-Kasem ◽  
K. M. Emara ◽  
S. M. Ahmed

The paper reports the influence of carburizing on the slurry erosion behavior of AISI 5117 steel using a whirling-arm rig. The microstructure and hardness profile of the surface layer of carburized steel were investigated. For characterizing the slurry damage process and for better understanding of material removal at different angles, scanning electron microscope (SEM) images at different locations on eroded surface using stepwise erosion combined with relocation SEM were presented. The study is also focused on studying the erosion wear resistance properties of AISI 5117 steel after carburizing at different impact angles. The tests were carried out with particle concentration of 1 wt. %, and the impact velocity of slurry stream was 15 m/s. Silica sand has a nominal size range of 250 – 355 μm was used as an erodent. The results showed that, carburizing process of steel increased the erosion resistance and hardness compared with untreated material for all impact angles. The erosion resistance of AISI 5117 steel increases by 75%, 61%, 33%, 10% at an impact angle of 30 deg, 45 deg, 60 deg, and 90 deg, respectively, as result of carburizing, i.e., the effectiveness of carburizing was the highest at low impact angles. Treated and untreated specimens behaved as ductile material, and the maximum mass loss appeared at impact angle of 45 deg. Plough grooves and cutting lips appeared for acute impact angle, but the material extrusions were for normal impact angles. The erosion traces were wider and deeper for untreated specimens comparing by the shallower and superficial ones for the carburized specimens. Chipping of the former impact sites by subsequent impact particles plays an important role in developing erosion.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
M. A. Al-Bukhaiti ◽  
A. Abouel-Kasem ◽  
K. M. Emara ◽  
S. M. Ahmed

High chromium white irons (HCCIs) are used extensively throughout the mineral processing industry to handle erosive and corrosive slurries. This study is an investigation of the effect of impact angle and velocity on slurry erosion of HCCI. The tests were carried out using a rotating whirling-arm rig with particle concentration of 1 wt. %. Silica sand which has a nominal size range of 500–710 μm was used as an erodent. The results were obtained for angles of 30 deg, 45 deg, 60 deg, and 90 deg to the exposed surface and velocities of 5, 10, and 15 m/s. The highest erosion resistance of HCCI was at normal impact and the lowest at an angle of 30 deg, irrespective of velocity. The low erosion resistance at an oblique angle is due to large material removal by microcutting from ductile matrix and gross removal of carbides. The effect of velocity, over the studied range from 5 m/s to 15 m/s, on the increase in the erosion rate was minor. The change of impact velocity resulted in changing the slurry erosion mechanisms. At normal incidence, plastic indentation with extruded material of the ductile matrix was the dominant erosion mechanism at low impact velocity (5 m/s). With increasing impact velocity, the material was removed by the indentation of the ductile matrix and to smaller extent of carbide fracture. However, at high impact velocity (15 m/s), gross fracture and cracking of the carbides besides plastic indentation of the ductile matrix were the dominant erosion mechanisms.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3967 ◽  
Author(s):  
Saleh Ahmed Aldahash ◽  
Osama Abdelaal ◽  
Yasser Abdelrhman

Erosion and erosion–corrosion tests of as-built Ti-6Al-4V manufactured by Selective Laser Melting were investigated using slurries composed of SiO2 sand particles and either tap water (pure water) or 3.5% NaCl solution (artificial seawater). The microhardness value of selective laser melting (SLM)ed Ti-6Al-4V alloy increased as the impact angle increased. The synergistic effect of corrosion and erosion in seawater is always higher than erosion in pure water at all impact angles. The seawater environment caused the dissolution of vanadium oxide V2O5 on the surface of SLMed Ti-6Al-4V alloy due to the presence of Cl− ions in the seawater. These findings show lower microhardness values and high mass losses under the erosion–corrosion test compared to those under the erosion test at all impact angles.


2013 ◽  
Vol 631-632 ◽  
pp. 366-370
Author(s):  
Ting Xie ◽  
Gang Liu ◽  
Peng Fei Wang ◽  
Yan Guo Yin

The polymethymethacrylate (PMMA) plate was adopted as the test samples. The effects of impact angle, impact velocity, sand size on the erosion wear of the PMMA plates were experimentally investigated. The erosion mechanisms were also analyzed. The results showed that, the erosion volume increased nonlinearly with the increase of impact velocity, the inflection point appeared at around 13 m/s, and then the erosion volume increased rapidly. The erosion volume decreased nonlinearly as the impact angle increased. In our experiments, under the impact angle less than 60°, the smaller sand size could result in higher erosion wear. However, at 90°, the erosion volume by larger sands produced higher erosion. In fact, the erosion mechanism depends on the impact angle, at small impact angles, the main erosion mechanism is micro-cutting, and the erosion mechanism will mainly be impacting fatigue at large impact angles. At the medium impact angles, the erosion mechanism is the combination of the micro-cutting and impacting.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Abouel-Kasem ◽  
M. A. Al-Bukhaiti ◽  
K. M. Emara ◽  
S. M. Ahmed

In the present work, the topographical images of slurry erosion surfaces at different impact angles were quantified using fractal analysis. The study showed that the variation of fractal value of slope of linearized power spectral density with the impact angle is largely similar to the relationship between the erosion rate and the impact angle. Both the fractal value and erosion rate were maximum at 45 deg and 90 deg for ductile and brittle materials, respectively. It was found also that the variation of fractal values versus the impact angle has a general trend that does not depend on magnification factor. The fractal features to the eroded surfaces along different directions showed high directionality at oblique impact angle and were symmetrical at normal impact.


2015 ◽  
Vol 2015 ◽  
pp. 1-31 ◽  
Author(s):  
Mohammad Asaduzzaman Chowdhury ◽  
Uttam Kumar Debnath ◽  
Dewan Muhammad Nuruzzaman ◽  
Md. Monirul Islam

The erosion characteristics of gunmetal have been evaluated practically at different operating conditions. Asymmetrical silica sand (SiO2) is taken into account as erodent within range of 300–600 μm. The impact velocity within 30–50 m/sec, impact angle 15–900, and stand off distance 15–25 mm are inspected as other relevant operating test conditions. The maximum level of erosion is obtained at impact angle 15° which indicates the ductile manner of the tested gunmetal. The higher the impact velocity, the higher the erosion rate as almost linear fashion is observed. Mass loss of gunmetal reduces with the increase of stand-off distance. A dimensional analysis, erosion efficiency (η), and relationship between friction and erosion indicate the prominent correlation. The test results are designated using Taguchi’s and ANOVA concept.S/Nratio indicates that there are 1.72% deviations that are estimated between predicted and experimental results. To elaborately analyze the results, ANN and GMDH methods are mentioned. After erosion process of tested composite, the damage propagation on surfaces is examined using SEM for the confirmation of possible nature of wear behavior. The elemental composition of eroded test samples at varying percentage of gunmetal is analyzed by EDX analysis.


2010 ◽  
Vol 152-153 ◽  
pp. 1054-1057
Author(s):  
Bing Liu ◽  
Xin Mei Li ◽  
Xiang Liu ◽  
Chun Yao Wang

Effects of different impact angles such as 45°and 90°on the erosion-abrasion properties of eutectic Al-Mn alloy and its composites reinforced with Al2O3 particulates were studied by rotating erosion-abrasion test, and the microstructure and the worn surfaces were analyzed. The results show that the as-cast Al-Mn alloy is composed of aluminium-manganese solid solution, MnAl6 and Al11Mn4 phase, while the δ-Al2O3 particles are included in the composites besides the aforementioned microstructures. With elongating the erosion time, the wear rates of the Al-Mn alloy and its composites increase at the impact angle of 90°, whereas they firstly increase and then decrease , and there is a maximum at 45°. The distortion wear caused by the normal stress is dominant at 90°, which lead to the erosion pits on the worn surface. However, the cutting wear by the shear stress is predominant at 45°, which result in the ploughs.


2011 ◽  
Vol 199-200 ◽  
pp. 48-53 ◽  
Author(s):  
Pu Woei Chen ◽  
Shu Han Chang ◽  
Yu Yang Hsieh ◽  
Tai Sing Sun

In recent years, light sport aircraft, which not only serve the purpose of personal recreation but also act as a means of transportation for medium and short distance travel, have rapidly gained popularity in the general aviation industry worldwide. The FAA established regulations for this new category of airplanes in 2004. However, the crashworthiness requirements for this type of airplane have not been clearly specified. This study used the finite element method to investigate the effect of the impact angle and speed of the LSA fuselage structure on passenger safety during a crash event. We used sink speed defined by NASA AGATE, ASTM and FAR as parameters. The passenger compartment reducing rate defined by MIL-STD-1290A was used for a safety boundary condition. The results show that the maximum cockpit reducing rate of the airplane impact angle is 30o. When the impact angle increases, owing to the engine mount and fire wall’s reinforced structure, this type of airplane can sustain a greater vertical drop speed. When the impact angle is about 80°~90°, the maximum impact speed the fuselage that can be sustained is 33 m/s. This work also completed a simulation of safe and unsafe ranges for light sport aircraft at various impact angles and vertical drop speeds during impact.


2021 ◽  
Vol 71 (6) ◽  
pp. 737-747
Author(s):  
Hussein Bassindowa ◽  
Bakhtier Farouk ◽  
Steven B. Segletes

A computational study of a projectile (either 2024 aluminum or TiAl6V4 titanium alloy) impacting a plate (either titanium alloy or aluminum) is presented in this paper. Projectile velocity (ranging from 250 m/s to 1500 m/s) with varying impact angles are considered. The presence of ricochet (if any) is identified over the ranges of the projectile velocity and impact angle considered. For the cases where ricochet is identified, the ricochet angle and velocity are predicted as functions of the incident angle and the incident velocity. The numerical results are compared with an analytical solution of the ricochet problem. The analytical solutions are from a model developed to predict the ballistic ricochet of a projectile (projectile) penetrator. The dynamics and the deformation of an aluminum (or a titanium alloy) projectile impacting on a finite thickness titanium alloy (or aluminum) plate are simulated. The current work is interesting in that it looks in the field of ballistics of different material combinations than are traditionally studied. The present simulations based on detailed material models for the aluminum and the titanium alloy and the impact physics modelling features in the LS-DYNA code provide interesting details regarding the projectile/plate deformations and post-impact projectile shape and geometry. The present results indicate that for no cases (for specified incoming velocities and impact angles considered) can an aluminum projectile penetrate a titanium alloy plate. The ricochet ‘mode predictions ‘obtained from the present simulations agree well with the ricochet ‘mode predictions’ given in an analytical model.


2018 ◽  
Vol 70 (7) ◽  
pp. 1176-1186 ◽  
Author(s):  
Yasser Abdelrhman ◽  
Ahmed Abouel-Kasem ◽  
Karam Emara ◽  
Shemy Ahmed

PurposeThis paper aims to clarify the relationship between the slurry erosion and one of the case hardening treatments, i.e. boronizing in this study, for AISI-5117 steel alloy. AISI-5117 steel alloy was used because of its variety applications in the field of submarine equipment. Most of the slurry erosion factors such as velocity, impact angle and mechanism of erosion were studied at different impact angles.Design/methodology/approachAt first, the samples were prepared and subjected to the boronizing treatment in controlled atmosphere. By using a slurry erosion test-rig, all experiments for studying the slurry erosion factors were carried out. Moreover, the studied specimens were investigated via scanning electron microscope, optical microscope and X-ray diffraction to study the erosion mechanism in the different conditions.FindingsIt was expected that the boronization of the AISI-5117 steel would increase its slurry erosion resistance due to its positive impact on the surface hardness. However, the results observed show the opposite, where the boronization of AISI-5117 steel decreased its slurry erosion resistance as implied by the increase of the mass loss percentage at all impact angles.Originality/valueThis research, for the first time, exhibits the effect of boronizing treatment on the slurry erosion in different impact factors accompanied by the erosion mechanism at each impact angle.


Sign in / Sign up

Export Citation Format

Share Document