Single-Step Process for the Deposition of High Water Contact Angle and High Water Sliding Angle Surfaces by Atmospheric Pressure Dielectric Barrier Discharge

2013 ◽  
Vol 5 (3) ◽  
pp. 1053-1060 ◽  
Author(s):  
Nicolas D. Boscher ◽  
David Duday ◽  
Stéphane Verdier ◽  
Patrick Choquet
BIBECHANA ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 19-25
Author(s):  
Rajesh Prakash Guragain ◽  
Hom Bahadur Baniya ◽  
Santosh Dhungana ◽  
Bishnu Prasad Pandey ◽  
Ujjwal Man Joshi ◽  
...  

Industrial applications of the dielectric barrier discharge (DBD) have a long tradition. However, lack of understanding in some of its fundamental issues, such as the stochastic behaviors, is still a challenge for DBD researchers. The work was carried out at line frequency, 15 kV and at atmospheric pressure. This work focuses on the study of the electrical and optical characteristics of DBD at atmospheric pressure to determine a suitable condition for utilization of the device for surface modification of polyamides (PA) (Nylon 6/6). In this work, films were treated by dielectric barrier discharge and the effects on the morphology and chemistry of the material was studied. Surface characteristics were examined via contact angle measurements and SEM. The wettability tests revealed the improvement of the hydrophilic character of the surface of polyamide films as the water contact angle measured after the plasma treatments significantly decreased. The corresponding changes of the total surface energy revealed a significant increase in its polar component. The improvement of the wettability of PA strongly depends on the treatment time. The outcomes of the experiments proved that the modification of surface properties via plasma treatment reach to its saturation point after certain treatment time thus reducing the necessity of further treatment. BIBECHANA 18 (2021) 19-25


2015 ◽  
Vol 645-646 ◽  
pp. 115-119
Author(s):  
Yang Wang ◽  
Hai Feng Zhang ◽  
Xiao Wei Liu

We have developed a combination of electro –deposition and spraying methods to prepare water-repellent tin oxide/ polytetrafluoroethylene(SnO2/PTFE) coating. The coating has a high water contact angle. The resulting porous and lowest surface energy hydrophobic groups (-CF3) has a water contact angle of 165° and a sliding angle of 7°, showing super-hydrophobic property. The coating with good adhesion on substrates and the long-term stability can be fabricated on various metal substrates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrzej Sikora ◽  
Dariusz Czylkowski ◽  
Bartosz Hrycak ◽  
Magdalena Moczała-Dusanowska ◽  
Marcin Łapiński ◽  
...  

AbstractThis paper presents the results of experimental investigations of the plasma surface modification of a poly(methyl methacrylate) (PMMA) polymer and PMMA composites with a [6,6]-phenyl-C61-butyric acid methyl ester fullerene derivative (PC61BM). An atmospheric pressure microwave (2.45 GHz) argon plasma sheet was used. The experimental parameters were: an argon (Ar) flow rate (up to 20 NL/min), microwave power (up to 530 W), number of plasma scans (up to 3) and, the kind of treated material. In order to assess the plasma effect, the possible changes in the wettability, roughness, chemical composition, and mechanical properties of the plasma-treated samples’ surfaces were evaluated by water contact angle goniometry (WCA), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The best result concerning the water contact angle reduction was from 83° to 29.7° for the PMMA material. The ageing studies of the PMMA plasma-modified surface showed long term (100 h) improved wettability. As a result of plasma treating, changes in the samples surface roughness parameters were observed, however their dependence on the number of plasma scans is irregular. The ATR-FTIR spectra of the PMMA plasma-treated surfaces showed only slight changes in comparison with the spectra of an untreated sample. The more significant differences were demonstrated by XPS measurements indicating the surface chemical composition changes after plasma treatment and revealing the oxygen to carbon ratio increase from 0.1 to 0.4.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jixi Zhang ◽  
Ligui Zhang ◽  
Xiao Gong

In this work, we prepare a PDMS-SiO2-PDA@fabric with high water contact angle (WCA=155o). Combining dopamine self-polymerization and sol-gel method, SiO2 is in situ grown on a PDA-modified fabric surface to...


2009 ◽  
Vol 620-622 ◽  
pp. 741-744 ◽  
Author(s):  
Rui Weng ◽  
Chong Rui Wang ◽  
Lian Meng Zhang ◽  
Shui Ping Wang

Fluoralkylpolysiloxane modified Polyurethane (FSPU) films with high water contact angle (CA) were prepared. fluoralkylpolysiloxane was obtained using perfluoro octyl sulfuryl fluoride and terminal amino-silicone oil as reactants. Then, the isocyanate end capped PU prepolymer was synthesized by reacting isocyanate with a soft segment mixed by active amino-end-capping fluoralkylpolysiloxane and polyether glycol. The fluoralkylpolysiloxane modified PU films were obtained after the PU prepolymer was cured by 3,3 '- dichloro -4,4' – amino - diphenyl methane (MOCA). The results showed that the modified polyurethane with 10% (mass fraction) PFATPS had a good compatibility, low surface energy, surface water contact angle and surface oil contact angle was improved by 49° and 37° respectively, and heat resistance, water resistance was apparently improved.


RSC Advances ◽  
2017 ◽  
Vol 7 (47) ◽  
pp. 29275-29283 ◽  
Author(s):  
Aoyun Zhuang ◽  
Ruijin Liao ◽  
Sebastian C. Dixon ◽  
Yao Lu ◽  
Sanjayan Sathasivam ◽  
...  

Hierarchical micro/nano-structured transparent superhydrophobic polytetrafluoroethylene films with water contact angle 168°, water sliding angle <1° and visible transmittance >90% were prepared on glass via aerosol-assisted chemical vapor deposition.


2010 ◽  
Vol 42 ◽  
pp. 228-231 ◽  
Author(s):  
Yan Zhang ◽  
Yin Ding Lv

In this paper, polypropylene (PP) melt blown non-woven fabric is treated by atmospheric pressure N2 or N2/CO2 dielectric barrier discharge (DBD) plasma. The variation of the surface hydrophilicity of PP sample is experimentally investigated by surface water contact angle, Fourier transform infrared reflectance spectroscopy (FTIR-ATR). The results show that the hydrophilicity of PP sample is considerably improved as long as the very short plasma treatment time (several seconds). However, the treatment effect of atmospheric N2/CO2 plasma is worse than that of atmospheric N2 plasma.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2474 ◽  
Author(s):  
Hao Wu ◽  
Hao Li ◽  
Ahmad Umar ◽  
Yao Wang ◽  
Guofu Zhou

Fluoropolymers play an essential role in electrowetting (EW) systems. However, no fluoropolymer possesses the desirable properties of both hydrophobicity and dielectric strength. In this study, for the first time, we report the integration of two representative fluoropolymers—namely, Teflon AF (AF 1600X) and Cytop (Cytop 809A)—into one bifunctionalized dielectric nanolayer. Within this nanolayer, both the superior hydrophobicity of Teflon AF and the excellent dielectric strength of Cytop were able to be retained. Each composed of a 0.5 μm Cytop bottom layer and a 0.06 μm Teflon AF top layer, the fabricated composite nanolayers showed a high withstand voltage of ~70 V (a dielectric strength of 125 V/μm) and a high water contact angle of ~120°. The electrowetting and dielectric properties of various film thicknesses were also systemically investigated. Through detailed study, it was observed that the thicker Teflon AF top layers produced no obvious enhancement of the Cytop/Teflon AF stack.


2008 ◽  
Vol 1132 ◽  
Author(s):  
Mehdi Shafiei ◽  
Ahmet T. Alpas

ABSTRACTA new method to fabricate superhydrophobic hard films is described. Surface texture of lotus leaf was replicated on an acetate film, on which a nanocrystalline (NC) Ni coating with a grain size of 30 ± 4 nm and a hardness of 4.42 GPa was electrodeposited. The surface texture consisted of conical protuberances with a height of 10.0 ± 2.0 0m and a tip radius of 2.5 ± 0.5 0m. An additional electrodeposition for 120 s and 300 s was used to locally modify the surface structure by depositing ‘Ni crowns' on the protuberances that increased their height to 14.0 ± 2.0 0m and their tip radius to 6.0 ± 0.5 0m. The modified structures were then treated with a perfluoropolyether (PFPE) solution, which provided a high water contact angle of 156°, i.e., comparable to the naturally superhydrophobic lotus leaf. The increased hydrophobicity as a result of surface structure and chemistry modifications was evident compared to a smooth NC Ni sample, which had a contact angle of 64°.


Sign in / Sign up

Export Citation Format

Share Document