Treatment of Membrane Concentrated “Young” Landfill Leachate by Coagulation Sedimentation

2013 ◽  
Vol 634-638 ◽  
pp. 349-352 ◽  
Author(s):  
Zheng Yang An ◽  
Xiao Jun Xu

A self-made coagulant was applied in the treatment of some membrane concentrated reject of the “young” landfill leachate. The optimum operation diameters were determined by orthogonal and single factor experiments. Under the optimum conditions, the values of COD and ammonia nitrogen of water sample after treatment were 88 mg/L and 10.8 mg/L, respectively, which reached the standard in Pollution Control Standard of Domestic Refuse Landfill GB 16889-2008. Therefore, coagulation method can be applied in the treatment of membrane concentrated “young” landfill leachate to achieve standard discharge.

2021 ◽  
Author(s):  
Nan Jiang ◽  
Li Huang ◽  
Manhong Huang ◽  
Teng Cai ◽  
Jialing Song ◽  
...  

Abstract In this study, thin-film composite with embedded polyester screen, cellulose triacetate with a cast nonwoven and cellulose triacetate with embedded polyester screen (CTA-ES) were examined as the intermediate membranes in osmotic microbial fuel cells (OsMFCs). The reactors were fed with actual landfill leachate and the performance was studied in two operation modes: active layer facing draw solution and active layer facing feed solution (AL-FS). The OsMFC with CTA-ES exhibited the best energy generation (maximum power density: 0.44 W m-2) and pollutant removal efficiency (ammonia nitrogen: 70.12 ± 0.28%, total nitrogen: 74.04 ± 0.33%) in the AL-FS mode, which could be ascribed to the lowest internal resistance (236.75 ohm) and highest microbial richness. Pseudomonas was the highest proportion of microbial in OsMFCs. The results of this study has demonstrated the potential of OsMFCs for landfill leachate treatment.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 906
Author(s):  
Justyna Michalska ◽  
Artur Piński ◽  
Joanna Żur ◽  
Agnieszka Mrozik

The treatment of landfill leachate could be challenging for the biological wastewater treatment systems due to its high toxicity and the presence of poorly biodegradable contaminants. In this study, the bioaugmentation technology was successfully applied in sequencing batch reactors (SBRs) fed with the phenolic landfill leachate by inoculation of the activated sludge (AS) with two phenol-degrading Pseudomonas putida OR45a and Pseudomonas putida KB3 strains. According to the results, the SBRs bioaugmented with Pseudomonas strains withstood the increasing concentrations of the leachate. This resulted in the higher removal efficiency of the chemical oxygen demand (COD) of 79–86%, ammonia nitrogen of 87–88% and phenolic compounds of 85–96% as compared to 45%, 64%, and 50% for the noninoculated SBR. Simultaneously, the bioaugmentation of the AS allowed to maintain the high enzymatic activity of dehydrogenases, nonspecific esterases, and catalase in this ecosystem, which contributed to the higher functional capacity of indigenous microorganisms than in the noninoculated AS. Herein, the stress level experienced by the microorganisms in the SBRs fed with the leachate computed based on the cellular ATP measurements showed that the abundance of exogenous Pseudomonas strains in the bioreactors contributed to the reduction in effluent toxicity, which was reflected by a decrease in the stress biomass index to 32–45% as compared to the nonbioaugmented AS (76%).


2015 ◽  
Vol 26 (3) ◽  
pp. 49-53 ◽  
Author(s):  
Anna Kwarciak-Kozłowska ◽  
Aleksandra Krzywicka

Abstract The goal of this article was to compare the efficiency of Fenton and photo-Fenton reaction used for stabilised landfill leachate treatment. The mass ratio of COD:H2O2 was fixed to 1:2 for every stages. The dose of reagents (ferrous sulphate/hydrogen peroxide) was different and ranged from 0.1 to 0.5. To determine the efficiency of treatment, the BOD (biochemical oxygen demand COD (chemical oxygen demand), TOC (total organic carbon) , ammonia nitrogen and BOD/COD ratio was measured. The experiment was carried out under the following conditions: temperature was 25ºC, the initial pH was adjusted to 3.0. Every processes were lasting 60 minutes. The most appropriate dose of reagents was 0.25 (Fe2+/H2O2). It was found that the application of UV contributed to increase of COD, TOC and ammonia removal efficiencies by an average of 14%.


2017 ◽  
Vol 35 (6) ◽  
pp. 636-646 ◽  
Author(s):  
Paria Amirian ◽  
Edris Bazrafshan ◽  
Abolfazl Payandeh

Leachate is the liquid formed when waste breaks down in the landfill and water filters through that waste. This liquid is very toxic and can pollute the land, ground water, and water resources. In most countries, it is mandatory for landfills to be protected against leachate. In addition to all other harms to the environment, disposal of raw landfill leachate can be a major source of hazard to closed water bodies. Hence, treatment of landfill leachate is considered an essential step prior to its discharge from source. This article describes the sonocatalytic degradation of chemical oxygen demand in landfill leachate using cupric oxide nanoparticles as sonocatalyst (cupric oxide/ultrasonic) and aims to establish this method as an effective alternative to currently used approaches. An ideal experimental design was carried out based on a central composite design with response surface methodology. The response surface methodology was used to evaluate the effect of process variables including pH values (3, 7, 11), cupric oxide nanoparticles dose (0.02, 0.035, 0.05 g), reaction time (10, 35, 60 minutes), ultrasonic frequency (35, 37, 130 KHz), and their interaction towards the attainment of their optimum conditions. The derived second-order model, including both significant linear and quadratic terms, seemed to be adequate in predicting responses (R2 = 0.9684 and prediction R2 = 0.9581). The optimum conditions for the maximum chemical oxygen demand sonocatalytic degradation of 85.82% were found to be pH 6.9, cupric oxide nanoparticles dosage of 0.05 gr L−1, and the ultrasonic frequency of 130 kHz at a contact time of 10 min.


2013 ◽  
Vol 750-752 ◽  
pp. 1586-1592
Author(s):  
Tao Gu ◽  
Li Qing Weng ◽  
Guo Xin Xue

The chemical comcomposition and water prehydrolysis of moso bamboo were studied to prepare high grade dissolving pulp. The results indicated that the moso bamboo was an appropriate none-wood material for great dissolving pulp goten as its high cellulose content. By single factor method, the optimum prehydrolysis conditions which were 150°C, 120minutes and 1:8 of liquor-to-wood tatio, were obtained. Based on the optimum conditions, the yield was 90.35%, and the retention rate of cellulose, pentosan, acid accumulator insoluble lignin, and ash were respectively 96.30%, 88.22%, 88.13%, and 11.71%.


2014 ◽  
Vol 955-959 ◽  
pp. 2701-2704
Author(s):  
You Lan Chen ◽  
Shan Shan Wu

Sludge-based Activated Carbon(SAC) was carried out on the method of chemical activation and high temperature pyrolysis, using municipal sludge as the main raw materials, mixed with a small amount of corn straw. Through the analysis of characterization of activated carbon, the best quality blending ratio of straw is 10% ; the dynamic adsorption results of tail liquid of landfill leachate show that SAC can effectively remove most of harmful substances in the tail liquid of landfill leachate and the effluent reached the vertical ground surface standard of the standard for pollution control on the landfill site for domestic waste .


2013 ◽  
Vol 690-693 ◽  
pp. 1203-1207 ◽  
Author(s):  
Shao Ying Zhang ◽  
Yin Zhe Ren

The enzymolysis of walnut residue protein was investigated using trypsase, and the best process conditions were studied by one-factor experiment and orthogonal experiment. The result showed that the influential degree weakened as follows sequence: temperature, pH, enzyme quantity, and time. The optimum conditions were temperature 53 °C, pH 8.3, enzyme quantity 0.85%, and time 2.5 h. The enzymolysis liquid obtained was thickly fragrant, nigger-brown, and not bitter. Its ammonia-nitrogen content was 6.98 g/100 g, and hydrolysis degree was 15.76%.


2013 ◽  
Vol 295-298 ◽  
pp. 1472-1477
Author(s):  
Tao Yu ◽  
Tao Huang ◽  
Yin Xi Pan ◽  
Lin Hai Yang

The technology used the coagulation-sedimentation + electro-oxidation joint reactor has been studied to treat landfill leachate. First adding FeCl30.4g/L into all leachate for coagulation and sedimentation, its CODcr elimination rate can achieve 35%, but does have no effect on ammonia nitrogen. Then using electro-oxidation reactor to deal with effluent water, the reaction order of electro-oxidation reactor is first-level, as the reaction conditions are 20mA/cm2 of electric current density, 140min of reaction time, the leachate CODcr elimination rate can reach to above 90%, the ammonia nitrogen elimination rate meets to 98% around. Using coagulation-sedimentation + electro coagulation joint reactor to treat landfill leachate can get stable effluent water quality with good treatment effect, has very high elimination efficiency of CODcr and ammonia nitrogen. It is a suitable treatment technology for landfill leachate.


2014 ◽  
Vol 69 (6) ◽  
pp. 1267-1274 ◽  
Author(s):  
M. Capodici ◽  
D. Di Trapani ◽  
G. Viviani

Aged or mature leachate, produced by old landfills, can be very refractory; for this reason mature leachate is difficult to treat alone, but it can be co-treated with sewage or domestic wastewater. The aim of the study was to investigate the feasibility of leachate co-treatment with synthetic wastewater, in terms of process performance and biomass activity, by means of respirometric techniques. Two sequencing batch reactors (SBRs), named SBR1 and SBR2, were fed with synthetic wastewater and two different percentages of landfill leachate (respectively 10% and 50% v v−1 in SBR1 and SBR2). The results showed good chemical oxygen demand (COD) removal efficiency for both reactors, with average COD removals equal to 91.64 and 89.04% respectively for SBR1 and SBR2. Furthermore, both SBRs showed good ammonia-nitrogen (AN) removal efficiencies, higher than 60%, thus confirming the feasibility of leachate co-treatment with a readily biodegradable wastewater. Significant respiration rates were obtained for the heterotrophic population (average values of maximum oxygen uptake rate equal to 37.30 and 56.68 mg O2 L−1 h−1 respectively for SBR1 and SBR2), thus suggesting the feasibility of leachate co-treatment with synthetic wastewater.


2018 ◽  
Vol 22 (1) ◽  
pp. 3-12
Author(s):  
Yilin Li ◽  
Guowei Shu ◽  
Yichao Li ◽  
Yu Liu ◽  
Yajuan Song

Abstract The effects of different prebiotics and oxygen scavengers on making the process of xanthan gum and chitosan (XC) Bifidobacterium bifidum BB01 microcapsules were studied by single factor experiment and Plackett-Burman screening test, ascorbic acid, sodium erythorbate and xylo-oligosaccharide had significant effects. Based on the previous studies, the process XC B. Bifidum BB01 microcapsules were further optimized by Box-Behnken model in this study. Response surface analysis showed that the best additive amoumt of ascorbic acid, sodium erythorbate and xylo-oligosaccharide were 3.0%, 2.36% and 4.99%, respectively. The viable counts of B. Bifidum BB01 microcapsules reached to 1.52×1010CFU/g from 1.25×1010 CFU/g, the encapsulation yield reached to 94.88% from 90% under the optimum conditions. It provided the research foundation for the afterward production and exploration of the process XC B. Bifidum BB01 microcapsules.


Sign in / Sign up

Export Citation Format

Share Document