Fire Response Calculation Based on Damage Mechanics

2013 ◽  
Vol 639-640 ◽  
pp. 1193-1199 ◽  
Author(s):  
Song Hua Tang ◽  
Ying She Luo ◽  
Shui Ping Yin ◽  
Yong Hong Li ◽  
Chao Chen ◽  
...  

Damage mechanics is introduced into the fire response calculation of the concrete structure. The damage mechanics equations for fire response calculation are established. They are the damage evolution equation based on “residual strength” theory, heat conduction equations, and elastic mechanical equations. The fire response calculation of a concrete slab under external load and fire is shown. ANSYS is selected for calculating. The temperature field and stress field are obtained, the damage and failure process are described using the technique of killing or activating elements in ANSYS, and the fire resistance of the slab is obtained.

2011 ◽  
Vol 70 ◽  
pp. 87-92 ◽  
Author(s):  
Shao Peng Ma ◽  
Dong Yan ◽  
Xian Wang ◽  
Yan Yan Cao

Observation of damage evolution is of great importance to the understanding of the failure process of rock materials. High-speed DIC system is constructed and used to observe the strain field evolution of the granodiorite disc in Brazilian test. The strain fields at different load levels are analyzed based on the stain abnormality indicator (SAI) which is the ratio of the strain measured in experiment to the strain from theoretical solution in an isotropy and elastic model. SAI could be used to indicate the damage in the specimen. The process of damage and failure of the specimen in Brazilian disc test is quantitatively analyzed and deeply discussed according to the strain fields and the statistics of SAI. Experimental results in this paper show that the failure process of the disc specimen in Brazilian test is not simple crack propagation under tensile load, but a complicated damage evolution procedure.


2011 ◽  
Vol 488-489 ◽  
pp. 464-467
Author(s):  
Ji Ze Mao ◽  
Zhi Yuan Zhang ◽  
Zong Min Liu ◽  
Chao Sun

With the development of damage mechanics, many researchers have used it to analyze the constitutive equation of concrete. Since the special environment in the cold marine regions, the offshore structures are common to subject to the comprehensive effects of freeze-thaw action and chloride erosion. This might cause concrete materials degradation and reduce the mechanical performance of concrete seriously. In this paper, based on the analysis and mechanical experiments of concrete materials under the comprehensive effects of freeze-thaw action and chloride ion erosion, the damage evolution equation of concrete elastic modulus along with the freeze-thaw cycles and chloride ion contents was established. The effects of chloride ion were investigated during the process of concrete degradation. According to the damage evolution equation, a new constitutive equation of concrete under freeze-thaw action and chloride erosion was established. And then, by means of the element simulation analysis of concrete beams when subjected to the comprehensive actions, the feasibility and applicability of the equation was examined and discussed. In this equation, both the freeze-thaw action and chloride ion erosion were considered together. It will be more suitable for analyzing the durability of concrete structures in the real cold marine regions. It will also provide some references for concrete constitutive theory.


2017 ◽  
Vol 1142 ◽  
pp. 363-366
Author(s):  
He Yang Sun ◽  
Chang Zhi Jia ◽  
Yao Xin He ◽  
Tian Xiao Cui

A Damage mechanics finite element numerical computation method was established based on HLC microscopic damage model to solve the problem of damage, crack initialization and growth inside bore during the firing process. The damage and failure process of the bore surface was simulated numerically during multiple rounds of firing. The law of the barrel material performance changing with the number of firing rounds was analyzed during the engraving process of the driving band and compared with the experimental results. It is proved that HLC microscopic damage model can show the complicate damage behavior and predict the cracking defect, which provides a reference for safety design of the gun barrel.


2012 ◽  
Vol 238 ◽  
pp. 46-50
Author(s):  
Wei Feng Bai ◽  
Ying Cui ◽  
Qian Wang ◽  
Jun Feng Guan ◽  
Jian Wei Zhang

The damage and failure mechanism of quasi-brittle materials is the most fundamental research topic in Damage Mechanics. In this paper, the mesoscopic damage mechanism of concrete under uniaxial tension was discussed. The rupture and yield damage modes in meso-scale were introduced as the two basic parameters to define the damage accumulated variable. The results show that the proposed statistical damage model can accurately predict the whole deformation and failure process of concrete under uniaxial tension, including the two-stage deformation characteristics and the size effect.


2011 ◽  
Vol 21 (4) ◽  
pp. 599-620 ◽  
Author(s):  
Zhang Miao ◽  
Meng Qingchun ◽  
Hu Weiping ◽  
Zhang Xing

First of all, the boom–panel model is constructed to describe the anisotropic damage evolution of continuum volume element. The constitutive relation of continuum volume element is represented by damage extent of the booms and panels. Furthermore, based on irreversible thermodynamics, damage evolution equations of boom and panel are constructed. The fatigue life prediction method for smooth specimen under the repeated loading with constant strain amplitude is constructed. By the theory of conservative integral in damage mechanics, the fatigue life prediction method for notched specimen under the repeated loading with constant amplitude is obtained. Using these methods, the material parameters of LC4CS aluminum alloy in the damage evolution equation can be obtained by the mean values of experimental fatigue curves of standard specimens with KT = 1, K T = 3, and K T = 5. The computational results are in accordance with the experiment data.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Meng Wang ◽  
Qingguo Fei ◽  
Peiwei Zhang

Based on the assumption of quasibrittle failure under high-cycle fatigue for the metal material, the damage constitutive equation and the modified damage evolution equation are obtained with continuum damage mechanics. Then, finite element method (FEM) is used to describe the failure process of metal material. The increment of specimen’s life and damage state can be researched using damage mechanics-FEM. Finally, the lifetime of the specimen is got at the given stress level. The damage mechanics-FEM is inserted into ABAQUS with subroutine USDFLD and the Python language is used to simulate the fatigue process of titanium alloy specimens. The simulation results have a good agreement with the testing results under constant amplitude loading, which proves the accuracy of the method.


2007 ◽  
Vol 348-349 ◽  
pp. 829-832 ◽  
Author(s):  
Sang Mook Han ◽  
Xiang Guo Wu ◽  
Sung Wook Kim ◽  
Su Tae Kang

Direct uniaxial tension test of ultra high performance cementitious composites I shape specimens have been investigated in this paper. A nonlinear analytical model based on continuum damage mechanics is developed to characterize tensile stress-strain constitutive response of UHPCC. Basic governing equations of damage evolution and material constitutive relation are established considering random damage which conforms to a modified Weibull type distribution proposed in this paper. Calculation suggests that Weibull distribution can describe damage evolution of UHPCC and predict the constitutive relation and damage evolution equation.


2020 ◽  
Vol 29 (9) ◽  
pp. 1397-1415
Author(s):  
Ziyi Wang ◽  
Xiang Xu ◽  
Li Ding ◽  
Guozheng Kang ◽  
Ping Wang ◽  
...  

In the framework of continuum damage mechanics, a new damage-coupled cyclic plastic model is proposed to describe the nonlinear evolution of whole-life ratchetting and its dependence on the stress level. The characteristic that the damage evolution rate of U75V heat-treated steel decays in the initial load cycles is considered by introducing a modified term into classic damage evolution equation. A hybrid fatigue failure criterion considering both the fatigue and ratchetting strain-induced failures is established based on the fatigue failure rule concluded from experiments. Comparisons between simulated and experimental stress–strain hysteresis loops, ratchetting strains, damage evolutions, and fatigue lives are performed to validate the proposed model.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Hualiang Wan ◽  
Qizhi Wang ◽  
Zheng Zhang

New damage mechanics method is proposed to predict the low-cycle fatigue life of metallic structures under multiaxial loading. The microstructure mechanical model is proposed to simulate anisotropic elastoplastic damage evolution. As the micromodel depends on few material parameters, the present method is very concise and suitable for engineering application. The material parameters in damage evolution equation are determined by fatigue experimental data of standard specimens. By employing further development on the ANSYS platform, the anisotropic elastoplastic damage mechanics-finite element method is developed. The fatigue crack propagation life of satellite structure is predicted using the present method and the computational results comply with the experimental data very well.


Sign in / Sign up

Export Citation Format

Share Document