Characteristics and Reuse Potential as Fertilizer Based on Heavy Metal Concentrations in Domestic Wastewater Biosolids (Taiwan)

2013 ◽  
Vol 647 ◽  
pp. 374-380
Author(s):  
Shu Fen Cheng ◽  
Jyh Woei Chen ◽  
Hui Min Yen ◽  
Chin Yuan Huang ◽  
Tsung Chieh Cheng ◽  
...  

Use of biosolid as fertilizer, soil conditioner and soil additive has been promoted in the US, Europe and Japan for some time. However, heavy metals of high concentrations contained in the sewage biosolid may through plant absorption and food chain seriously affect human health and contaminate the soil if the sludge is used directly as fertilizer or soil conditioner. Numerous studies have been conducted on the correlation between biosolid heavy contents and bioavailability. In Taiwan, there is no integral data on concentrations and characteristics of heavy metals contained in biosolids that supports the re-use of biosolid as fertilizer. Hence, the feasibility of re-using biosolid has not be implemented and promoted. In this research, six representative wastewater treatment plants in Taiwan have been selected for collecting biosolid samples in order to understand the concentrations and characteristics of heavy metals contained in biosolids so that the feasibility of re-using these biosolids can then be evaluated. The analysis results reveal that the biosolids collected from the six wastewater treatment sludge contains Cd has the greatest concentration differences among sample collected from different wastewater treatment plants with 130.6 % difference followed by As (90.2 % difference), and Ni (71.3 % difference). Cadmium contained in Fu-Tien wastewater treatment plant sludge has the greatest difference at different sample times with 58.7% difference; nickel is the next with 47.2 % difference. When the distribution of metal bond fraction is concerned, copper, lead, cadmium and zinc show little difference; copper exists primarily in organic bond fraction, lead in residual fraction, cadmium in residual fraction and organic bond fraction, zinc in Fe/Mn-oxide bond fraction. When reused as fertilizer, the biosolid that contains cadmium, nickel and zinc could exceed the limitations. It can be rinsed in 1 M HCl solution to effective reduce its heavy metal contents to meet the minimum standards for reuse as fertilizer in soil.

1992 ◽  
Vol 25 (4-5) ◽  
pp. 429-431 ◽  
Author(s):  
M. Sedláček ◽  
T. Just

Since 1987 operators of municipal wastewater treatment plants, having the population equivalent over 5 000, monitor systematically heavy metals in sludges, based on one or two samplings on the average annually. Generally, Cd, Cr, Cu, Ni, Pb and Zn are monitored: since 1989 Hg is becoming the centre of systematic attention. Occasional data are available on concentrated Ag, Co, As and Mo. These data were collected and ordered by the authors of the paper. On their basis lines of exceedance were plotted and sets were prepared, characterizing both localities with the common level of the sludge contamination, and with the extremely low contamination level reflecting the condition that could be achieved if measures limiting the heavy metal input into public sewerage systems were adopted. The results achieved were compared with heavy metal concentration limits, as determined in the Industrial composts standard, both for raw materials used for the compost production, and for composts of Ist and IInd grades. With a view to the general environmental contamination, and considering the present economic and agricultural use, the input raw materials should meet the demands that are required under the standard for the prepared composts.


2016 ◽  
Vol 23 (2) ◽  
pp. 271-283 ◽  
Author(s):  
Thomas Spanos ◽  
Antoaneta Ene ◽  
Chrysoula Styliani Patronidou ◽  
Christina Xatzixristou

AbstractThe aim of this study was to evaluate the temporal variations of selected heavy metals level in anaerobic fermented and dewatered sewage sludge. Sewage sludge samples were collected in different seasons and years from three municipal wastewater treatment plants (WWTPs) located in Northern Greece, in Kavala (Kavala and Palio localities) and Drama (Drama locality) Prefectures. An investigation of the potential of sludge utilization in agriculture was performed, based on the comparison of average total heavy metal concentrations and of chromium species (hexavalent, trivalent) concentrations with the allowed values according to the Council Directive 86/278/EEC and Greek national legislation (Joint Cabinet Decision 80568/4225/91) guidelines. In this regard, all the investigated heavy metals (Cd, Cr, Cu, Ni, Pb, Zn, Hg) and chromium species Cr(VI) and Cr(III) have average concentrations (dry matter weight) well below the legislated thresholds for soil application, as following: 2.12 mg kg−1Cd; 103.7 mg kg−1Cr; 136.4 mg kg−1Cu; < 0.2 mg kg−1Hg; 29.1 mg kg−1Ni; 62.0 mg kg−1Pb; 1253.2 mg kg−1Zn; 1.56 mg kg−1Cr(VI) and 115.7 mg kg−1Cr(III). Values of relative standard deviation (RSD) indicate a low or moderate temporal variability for domestic-related metals Zn (10.3-14.7%), Pb (27.9-44.5%) and Cu (33.5-34.2%), and high variability for the metals of mixed origin or predominantly resulted from commercial activities, such as Ni (42.4-50.7%), Cd (44.3-85.5%) and Cr (58.2-102.0%). For some elements the seasonal occurrence pattern is the same for Kavala and Palio sludge, as following: a) Cd and Cr: spring>summer>winter; b) Cu, Ni and Pb: winter>spring>summer. On average, in summer months (dry season) metal concentrations are lower than in spring and winter (wet seasons), with the exception of Zn. For Kavala and Palio the results demonstrate that the increased number of inhabitants (almost doubled) in summer time due to tourism does not influence the metal levels in sludge. Comparing the results obtained for similar spring-summer-winter sequences in 2007 and 2010/11 and for the spring season in 2007, 2008 and 2010, it can be noticed that, in general, the average heavy metal contents show an increasing tendency towards the last year. In all the measurement periods, the Palio sludge had the highest metal contents and Kavala sludge the lowest, leading to the conclusion that the WWTP operating process rather than population has a significant effect upon the heavy metal content of sludge. Cr(VI)/Cr(total) concentration ratios are higher for Kavala sludge in the majority of sampling campaigns, followed by Drama and Palio sludge. The metals which present moderate to strong positive correlation have common origin, which could be a domestic-commercial mixed source.


2004 ◽  
Vol 50 (6) ◽  
pp. 251-260 ◽  
Author(s):  
M.S. Moussa ◽  
A.R. Rojas ◽  
C.M. Hooijmans ◽  
H.J. Gijzen ◽  
M.C.M. van Loosdrecht

Computer modelling has been used in the last 15 years as a powerful tool for understanding the behaviour of activated sludge wastewater treatment systems. However, computer models are mainly applied for domestic wastewater treatment plants (WWTPs). Application of these types of models to industrial wastewater treatment plants requires a different model structure and an accurate estimation of the kinetics and stoichiometry of the model parameters, which may be different from the ones used for domestic wastewater. Most of these parameters are strongly dependent on the wastewater composition. In this study a modified version of the activated sludge model No. 1 (ASM 1) was used to describe a tannery WWTP. Several biological tests and complementary physical-chemical analyses were performed to characterise the wastewater and sludge composition in the context of activated sludge modelling. The proposed model was calibrated under steady-state conditions and validated under dynamic flow conditions. The model was successfully used to obtain insight into the existing plant performance, possible extension and options for process optimisation. The model illustrated the potential capacity of the plant to achieve full denitrification and to handle a higher hydraulic load. Moreover, the use of a mathematical model as an effective tool in decision making was demonstrated.


1997 ◽  
Vol 36 (11) ◽  
pp. 171-179 ◽  
Author(s):  
J. H. Rensink ◽  
W. H. Rulkens

Pilot plant experiments have been carried out to study the mineralization of sludge from biological wastewater treatment plants by worms such as Tubificidae. Trickling filters filled with lava slags were continuously fed with a certain quantity of excess activated sludge of a Dutch brewery wastewater treatment plant (Bavaria) by recirculation during 10 to 14 days. At the starting point of each experiment the trickling filters were inoculated with Tubificidae. Recirculation of sludge showed that use of Tubificidae resulted in a COD reduction of the sludge (mixed liquor) of 18–67–. Without worms this reduction was substantially lower. The sludge production in a pilot activated sludge system for treating settled domestic wastewater reduced from 0.40 to 0.15 g MLSS/g COD removed when Tubificidae were added to the system. The lower amounts of sludge were always accompanied by an increase of nitrate and phosphate concentration in the wastewater. There was no disturbance of the nitrification process. Application of Tubificidae or other worms may have interesting potential for practical application.


Author(s):  
Gilda-Diana Buzatu ◽  
Ana Maria Dodocioiu

Abstract The study was conducted in two neighboring localities located in the northern county of Dolj, namely Murgasi and Bulzesti. The purpose of the study was twofold: namely, the study of heavy metal loading in order to identify possible pollution areas and to know the soil content of these localities in heavy metals in order to be able to give the verdict on the use of sludge from Craiova wastewater treatment plant as fertilizer on these soils. In order to determine the suitability of sewage sludge from the Craiova wastewater treatment plant as a fertilizer, physical and chemical properties and heavy metal content of the soils in these areas were analysed, as well as the chemical composition of sludge, according to Order 344/2004 of the Ministry of Environment and Water Management of Romania, respectively 13 physical and chemical parameters of the soils in these localities and the chemical composition of the sludge and respectively the quantity of heavy metals to be introduced annually into the soil by using it.


2017 ◽  
Author(s):  
Nezar Al-Atawneh ◽  
Nidal Mahmoud ◽  
Peter Van der Steen ◽  
Piet N.L. Lens

Raw domestic wastewater from an individual home was characterised and the water quality was followed after disposal to a partially sealed cesspit over the whole filling period of 4 months. The results revealed that raw wastewater was of medium strength according to the US EPA classification, and was more concentrated than Palestinian municipal sewage. Septage is the water accumulating in the pit, but above the accumulated bottom sludge. The septage was more concentrated than the raw sewage. The specific household water consumption, wastewater generated, septage collected by vacuum truck and septage water infiltration were respectively (59 L/c.d; 100%), (52 L/c.d; 87%), (11 L/c.d; 19%) and (40 L/c.d; 68%). The specific removal of pollutants in the cesspits were: BOD5 (78 g/c/d), COD (62 g/c/d), N total (52 g/c/d), PO4-P (66 g/c/d) and TSS (69 g/c/d). The specific pollution loads of emptied septage were BOD5 (5.6 g/c/d), COD (19.3 g/c/d), N total (4.8 g/c/d), PO4-P (0.17 g/c/d) and TSS (25.5 g/c/d). The concentrations of heavy metals (Cu, Pb, Mn, Fe and Zn) in septage water were not in compliance with heavy metals concentration limits of the Palestinian regulations for wadi disposal and effluent reuse in agriculture. As a consequence, septage disposal in wadis and agricultural fields is not safe. However, according to municipal regulations, the heavy metals concentrations allow septage to be disposed in the Al-Bireh wastewater treatment plant septage receiving unit, to be further treated in the aerobic system. Regarding nitrogen that is removed in the cesspit, the vast majority will most likely exfiltrate out of the cesspit into the surrounding soil, and might potentially reach the groundwater. Therefore, cesspits should be replaced by proper wastewater treatment systems.


1994 ◽  
Vol 29 (9) ◽  
pp. 55-67
Author(s):  
H. Grüttner ◽  
L. Munk ◽  
F. Pedersen ◽  
J. Tørsløv

Due to the extension of wastewater treatment plants to nutrient removal and the development towards reuse of sludge in agriculture, new guidelines for regulating industrial discharges in Denmark were needed. The paper describes how a concept for regulating the discharge of specific organic substances and heavy metals has been developed during the past two years. The concept is based on guidelines that are made according to considerations of the environment and the treatment plant system, and that encourage the introduction of a cleaner technology and integrated preventive measures. For most organic substances, present knowledge of fate and effects in biological treatment plants is too scarce to underpin the setting of general standards. Therefore, it has been decided to base the developed priority system on the data used in the EEC-system for classification of hazardous chemicals. This includes ready degradability, defined by the OECD-test, bio-sorption and bio-accumulation, defined by the octanol/water distribution coefficient and toxic effects on water organisms. Several potential effects of seven heavy metals have been evaluated, and the most critical effects were found to be the quality criteria for sludge intended for use in agriculture, and the quality criteria for the aquatic environment. Proposals for general guidelines have been calculated using a simple mass balance model combined with water quality criteria and the Danish limit values for use of sludge in agriculture.


Author(s):  
Malwina Tytła

This study aimed to assess the pollution and potential ecological risk of seven heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in the sewage sludge collected from a wastewater treatment plant (WWTP), located in the most industrialized region of Poland (Silesian Voivodeship). The concentrations of heavy metals were determined using inductively coupled plasma optical spectrometry (ICP-OES) and cold vapor atomic absorption spectrometry (CVAAS). The chemical forms (chemical speciation) of heavy metals were determined using the three-step chemical sequential extraction procedure, developed by the Community Bureau of Reference (BCR). To assess the pollution level and potential ecological risk, the following indices were used: Geoaccumulation Index (Igeo), Potential Ecological Risk Factor (ER), Individual Contamination Factor (ICF), Risk Assessment Code (RAC), and Ecological Risk Factor (ERF)—the author’s index. Sludge samples were collected at successive stages of processing. The results revealed that the activated sludge process and sludge thickening have a significant impact on heavy metal distribution, while anaerobic digestion and dehydration decrease their mobility. The most dominant metals in the sludge samples were Zn and Cu. However, the content of heavy metals in sewage sludge did not exceed the permissible standards for agricultural purposes. The concentrations of heavy metals bound to the immobile fractions exhibited higher concentrations, compared to those bound to mobile fractions (except Zn). The values of the total indices indicated that sludge samples were moderately to highly contaminated with Zn, Hg, Cd, Cu, and Pb, of which only Hg, Cd, and Cu posed a potential ecological risk, while according to the speciation indices, sludge samples were moderately to very highly polluted with Zn, Cu, Cd, Cr, and Ni, of which Zn, Ni, and Cd were environmentally hazardous. The obtained results proved that assessment of the pollution level and potential ecological risk of heavy metals in sewage sludge requires knowledge on both their total concentrations and their chemical forms. Such an approach will help prevent secondary pollution of soils with heavy metals, which may influence the reduction of health risks associated with the consumption of plants characterized by a high metal content.


2007 ◽  
pp. 227-237
Author(s):  
Nataliia Suchkova ◽  
Yuri Vergeles

The contamination of the sewage sludge fields of municipal wastewater treatment plants (WWTPs) by heavy metals, hydrocarbons or other pollutants is a major environmental problem. Sludge can retain up to 96% of all the metals entering the WWTPs in sewage, therefore, when it is disposed to land, heavy metals will be accumulated in the soil. Effects of heavy metal accumulation are long lasting and even permanent. Phytotoxicity is the main problem, although metals can be transferred directly to man via vegetables and other crops or indirectly via animals, primarily cattle, eating herbage (zootoxic). The common metals in sludge are Zn, Cu, Ni, Pb, Cr, and Cd which are generally the most toxic metal found in high concentration.Conventional treatment techniques of contaminated territory suffer from serious shortcomings which limit their applicability and efficiency. These include high cost and maintenance requirements, the need to transfer the contamination from one medium to another, and the extended duration of the operation. Alternatives to these treatments lie in in­situ phytoremediation. Plants are among the most tolerant organisms to pollution, which emphasizes their utility for the detoxification or degradation of pollutants. The concept of phytoremediation was inspired by the discovery of hyper-accumulators, most of which belong to the botanical families Brassicaceae, Poaceae, Papilionaceae, Caryophyllaceae, and Asteraceae, which provide most of the candidates for heavy metal phytoremediation. Two other families are important - the Salicaceae with the genera Salix and Populus, which are effective against a range of pollutants; and the Betaceae which contribute species effective against salt ions and small (few rings) polycyclic aromatic hydrocarbons (PAHs). Some Asteraceae species have been shown to be good phytoremediants of radionuclide pollution [ I ].This paper summarizes the results obtained from laboratory, as well as from in-situ experiments (sludge fields at Kharkiv's WWTP, total area is approx. 126 ha) which focused on phytoremediation methodologies for the removal of heavy metals from sewage sludge.


Sign in / Sign up

Export Citation Format

Share Document