Alloy Design and Microstructure Control for the Production of Heavy Ductile Irons Used in Large-Scale Windmills

2013 ◽  
Vol 652-654 ◽  
pp. 909-915
Author(s):  
Yung Ning Pan ◽  
Chi Chia Lin ◽  
Re Mo Chang

The primary purpose of this research is to establish the optimal alloy design and microstructure for achieving the desired mechanical properties (tensile strength, yield strength, elongation and low temperature impact value) of key components used in large-scale windmills. In order to meet the impact requirement (I-40°C≥10J) of spec. EN-GJS-350-22U-LT, the Si content should be kept below 1.97%, and also the maximum pearlite content shouldn’t exceed 7.8%. On the other hand, the optimal alloy designs that can comply with specification EN-GJS-700-2U include 0.25%Mn+0.8%Cu+0.01%Sn , 0.25%Mn+0.6%Cu+0.05%Sn and 0.45%Mn+0.6%Cu+0.01%Sn. Furthermore, based upon the experimental results, multiple regression analyses have been performed to correlate the mechanical properties with chemical compositions and microstructures. The derived regression equations can be used to attain the optimal alloy design for castings with targeted specifications. Furthermore, by employing these regression equations, the mechanical properties can be predicted based upon the chemical compositions and microstructures of cast irons.

2007 ◽  
Vol 26-28 ◽  
pp. 531-534
Author(s):  
B.M. Moon ◽  
Bong Hwan Kim ◽  
Je Sik Shin ◽  
Sang Mok Lee

For thin-walled casting development of austempered ductile iron (ADI), permanent mold casting and accompanied heat treatment practice were systematically investigated to suppress and/or remove chill defects of ductile cast iron (DCI) with various thickness of 2 to 9 mm and to ensure mechanical properties of the final ADI casting. Si content was increased up to 3.8% to reduce the chill formation tendency under a high cooling rate. The residual Mg content remarkably affected the nodule count, while the nodule size and spherodization were proven to have weak relationships. Austenitizing process followed by austempering was very sensitive to chemical compositions (Si and Sn) and heat treatment temperature. As a practical application, the steel bar coupler for a structural frame was tried to produce without subsequent machining.


Author(s):  
Julieta Kaleicheva ◽  
Krasimir Kirov ◽  
Valentin Plamenov Mishev ◽  
Zdravka Karaguiozova

The microstructure and mechanical properties of high chromium white cast iron with composition: 2,6÷3,4% C; 0,9÷1,1% Si; 0,8÷1,1% Mn; 1,0÷1,3% Mo; 12,3÷13,4% Cr, additionally doped with boron in an amount of 0,18% to 1,25% is investigated. The microstructure of six compositions of white cast irons is studied by means of an optical metallographic analysis - one without boron, and the others contain 0,18%; 0,23%; 0,59%; 0,96% and 1,25% boron. A test is performed to determine: hardness by the Rockwell method; microhardness; bending strength and impact toughness. It was found that at a boron content of 0,18%; 0,23% and 0,59%, the structure of white cast irons is subeutectic, with impact toughness in the range of 1,80÷1,52 J/cm2; with a boron content of 0,96%, the structure of white cast iron is close to the eutectic, with impact toughness 0,98 J/cm2 ; at a boron content of 1,25% the structure of white cast iron is supereutectic and the impact toughness decreases to 0,68 J/cm2. With a change in the boron content from 0,8% to 1,25%, the amount of carbide phase in the structure of white cast iron increases, which leads to an increase in hardness from 53 to 59 HRC. The highest bending strength (Rmi=660,85 MPa) was obtained in white cast irons with a boron content of 0,23%. 


Author(s):  
Lv Haiting

Large rolling bearings are mainly used in occasions of low speed and heavy load due to its desirable properties such as large-scale structure and high bearing capacity. Currently, the research emphases of large rolling bearings are focussed on the load distribution, load carrying capacity, fatigue life and structure optimization. Bearings used in heavy vehicles belong to large bearings, whose reliability is also very important. In this paper, the characteristics of the structures of four point angular contact ball bearings and three row cylindrical roller bearing are analyzed. Finite element (FE) model is used to simulate the load distribution and angle variation in the actual working process of a large rolling bearing. In order to analyze the impact of the constraints, the stiffness and the local hard point of the supporting structure on the mechanical properties of large rolling bearings, a series of simplified FE models of large rolling bearing with different constraints and supporting structure has been carried out.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1023
Author(s):  
Glenn W. Hatala ◽  
Qian Wang ◽  
Edward W. Reutzel ◽  
Charles R. Fisher ◽  
Jennifer K. Semple

There is increased interest in using nickel aluminum bronze (NAB) alloys in large-scale directed energy deposition additive manufacturing (DEDAM) processes for maritime applications, but one challenge lies in the component distortion that results from residual stress generated during fabrication. This paper describes the development and evaluation of thermo-mechanical simulations for laser hot wire (LHW) DEDAM of NAB to predict part distortion. To account for the dearth of temperature-dependent properties for NAB C95800 in open literature and public databases, temperature-dependent material and mechanical properties for NAB C95800 were experimentally measured using test specimens fabricated with a variety of DEDAM processes. Autodesk’s Netfabb Local Simulation software, a commercial finite-element based AM solver, was employed but with its heat source model modified to accommodate LHW DEDAM’s oscillating laser path and additional energy input supplied by the preheated wire feedstock. Thermo-mechanical simulations were conducted using both the acquired temperature-dependent material and mechanical properties and the constant room-temperature properties to assess the impact on simulation accuracy. The usage of constant properties in the thermo-mechanical analysis resulted in significantly different predicted distortion compared to those using the temperature-dependent properties, at times even predicting substrate displacement in an opposite direction.


Author(s):  
B. L. Krasnyi ◽  
K. I. Ikonnikov ◽  
A. L. Galganova

Melting in ceramic crucible is one of the stages of recycling jewelry production. Conceptivity of concrete mass plays an important role in molding a large-scale refractory crucible to vibration. The impact of a number of commercially available dispersants (CASTAment FS 10, MELFLUX 1641 F, peramin al 200, FF7 SPEZIAL and PC-1701) on the rheology of the low-cement concrete mass of corundo-mullite-zirconium composition and the physico-mechanical properties of the material are considered. The best results were obtained using the PC-1701 dispersant. 


2014 ◽  
Vol 886 ◽  
pp. 59-62
Author(s):  
Xiao Dong Luo ◽  
Yong Xiang Zhu ◽  
Hao Liu

Subcritical quenching is a kind of heat treatments, which have good strength and higher Plastic toughness. Through this process, the ship plate steels microstructure and performance can be promoted evidently. This article studies the effect of subcritical quenching temperature on the microstructure and performance of controlled rolling and controlled cooling (TMCP) EH36 ship plate steel with the thickness of 15mm,by mechanical properties text and optical microscopy. The results show that the comprehensive property of TMCP ship plate steel can be enhanced remarkably, its hardness and plasticity could be improved obviously,especially the low temperature impact property. With the increasing of quenching temperature,the grain grows,the impact property is decreased.


Author(s):  
Ryuichi Ando ◽  
Kazushige Arimochi ◽  
Tomoya Kawabata ◽  
Kazushi Onishi ◽  
Takahiro Kamo ◽  
...  

Demand of natural gas continues to increase in the recent years due to the rise of environmental issue and the drastic increase of crude oil price. These events led to the increase of constructions of Liquefied Natural Gas (LNG) storage tanks worldwide. The inner tank material for above ground LNG storage tanks have mostly been made of a 9% nickel steel plate over the last 50 years as it has excellent mechanical properties under the cryogenic temperature of −160deg-C. During this period, the LNG storage tanks made of 9%Ni steel plate have been operated safely at the many LNG export and import terminals in the world. Meanwhile, technologies of steel making, refinement, design, analysis, welding and inspection have been improved significantly and enabled enlarging volumetric capacity of the tank 2–3 times. There was a tendency for nickel price to increase in recent years. In such a circumstance lowering Ni content has focused attention on the 9%Ni steel as nickel is an expensive and valuable rare metal and a 7%Ni steel plate was eventually researched and developed by optimizing the chemical compositions and applying Thermo-Mechanical Controlled Process (TMCP). As a result, it was demonstrated that 7%Ni-TMCP steel plate had excellent physical and mechanical properties equivalent to those of 9%Ni steel plate. In order to evaluate fitness of the 7%Ni-TMCP steel plate and its weld for LNG storage tanks a series of testing was conducted. Several different plate thicknesses, i.e. 6,10,25,40 and 50 mm, were chosen to run large scale fracture toughness tests including duplex ESSO tests, cruciform wide plate tests as well as small scale tests. It was concluded that the 7%Ni-TMCP steel plate warrants serious consideration for use in LNG storage tanks. This paper reports details of the research and development of the 7%Ni-TMCP steel plate.


MRS Advances ◽  
2018 ◽  
Vol 3 (62) ◽  
pp. 3683-3694 ◽  
Author(s):  
A. Jiménez-Jiménez ◽  
A. M. Paniagua-Mercado ◽  
A. García-Bórquez ◽  
V. M. López-Hirata ◽  
A. S. De Ita-De la Torre ◽  
...  

AbstractThe purpose of this work is to study the effect of SiO2- and Al2O3-NPs on the microstructure and mechanical properties of the weld bead (WB) created by a process of Submerged Arc Welding (SAW) between two AISI 1025 steel plates. Also it was necessary consider the chemical compositions of slags and burned fluxes, in order to determine the elements that are deposited and contribute in the final microstructure of WB. The welding materials to form each WB were a M12K electrode, a commercial fused flux (CFF) and AISI 1025 steel plates bevelled at 45°. In addition SiO2- or Al2O3-NPs an ethylic alcohol mixture were applied directly to the beveled surfaces, just before the SAW process, which was carried out according to the AWS A5.17 norm. Microstructural and phase changes at the Heat Affected Zone (HAZ) and Welding Zone (WZ) were analysed by metallographic Optical and Scanning Electron Microscopies. The mechanical properties of the WBs were determined through Tensile, Charpy impact and Vickers Hardness tests. By means of metallography of WBs, it was determined that the length of the AF needles increases in 113 and 183 % when adding SiO2- or Al2O3-NPs, respectively. Related to the mechanical properties of the WB, the tensile and yield strength decreases with both additions, SiO2- or Al2O3-NPs. The microhardness at WZ was found to decrease by adding such oxide-NPs. Moreover, the impact energy absorbed by the WBs increases approximately by 83 or 57% due to SiO2- or Al2O3-NPs addition, respectively.


2017 ◽  
Vol 898 ◽  
pp. 772-777
Author(s):  
Jia Xing Wang ◽  
Xu Ming Wang ◽  
Hui Guo ◽  
Ai Min Zhao ◽  
Liu Wei

The tensile and impact tests were used to study the mechanical properties under different temperatures of 300 mm large-scale angle steel at different positions, especially the tensile strength, yield strength, total elongation and impact toughness in the range of-40 oC to 20 oC. The results showed that different regions had great differences in the microstructures and impact toughness, in which the size of edge region was the smallest and the impact toughness was the best. However, the coarsened grain of heat affected zone at weld region had deteriorated to the low temperature impact toughness. When the impact energy was 34 J, the ductile-brittle transition temperature of weld, center, vertex and edge were-7.2 oC, -33.0 oC, -31.5 oC and far less than-40 oC, respectively. Meanwhile, because the banded structure was detrimental to the ductility, the elongation of rolling direction was lower than vertical direction. The strength of weld region was higher than other locations, but the elongation was obviously decreased.


Sign in / Sign up

Export Citation Format

Share Document