Low Temperature Mechanical Properties of Power Transmission Tower Steel

2017 ◽  
Vol 898 ◽  
pp. 772-777
Author(s):  
Jia Xing Wang ◽  
Xu Ming Wang ◽  
Hui Guo ◽  
Ai Min Zhao ◽  
Liu Wei

The tensile and impact tests were used to study the mechanical properties under different temperatures of 300 mm large-scale angle steel at different positions, especially the tensile strength, yield strength, total elongation and impact toughness in the range of-40 oC to 20 oC. The results showed that different regions had great differences in the microstructures and impact toughness, in which the size of edge region was the smallest and the impact toughness was the best. However, the coarsened grain of heat affected zone at weld region had deteriorated to the low temperature impact toughness. When the impact energy was 34 J, the ductile-brittle transition temperature of weld, center, vertex and edge were-7.2 oC, -33.0 oC, -31.5 oC and far less than-40 oC, respectively. Meanwhile, because the banded structure was detrimental to the ductility, the elongation of rolling direction was lower than vertical direction. The strength of weld region was higher than other locations, but the elongation was obviously decreased.

2019 ◽  
Vol 9 (20) ◽  
pp. 4231
Author(s):  
Oskari Haiko ◽  
Antti Kaijalainen ◽  
Sakari Pallaspuro ◽  
Jaakko Hannula ◽  
David Porter ◽  
...  

In this paper, the effects of different tempering temperatures on a recently developed ultrahigh-strength steel with 0.4 wt.% carbon content were studied. The steel is designed to be used in press-hardening for different wear applications, which require high surface hardness (650 HV/58 HRC). Hot-rolled steel sheet from a hot strip mill was austenitized, water quenched and subjected to 2-h tempering at different temperatures ranging from 150 °C to 400 °C. Mechanical properties, microstructure, dislocation densities, and fracture surfaces of the steels were characterized. Tensile strength greater than 2200 MPa and hardness above 650 HV/58 HRC were measured for the as-quenched variant. Tempering decreased the tensile strength and hardness, but yield strength increased with low-temperature tempering (150 °C and 200 °C). Charpy-V impact toughness improved with low-temperature tempering, but tempered martensite embrittlement at 300 °C and 400 °C decreased the impact toughness at −40 °C. Dislocation densities as estimated using X-ray diffraction showed a linear decrease with increasing tempering temperature. Retained austenite was present in the water quenched and low-temperature tempered samples, but no retained austenite was found in samples subjected to tempering at 300 °C or higher. The substantial changes in the microstructure of the steels caused by the tempering are discussed.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1000
Author(s):  
Biao Deng ◽  
Dapeng Yang ◽  
Guodong Wang ◽  
Ziyong Hou ◽  
Hongliang Yi

Austenitizing temperature is one decisive factor for the mechanical properties of medium carbon martensitic stainless steels (MCMSSs). In the present work, the effects of austenitizing temperature (1000, 1020, 1040 and 1060 °C) on the microstructure and mechanical properties of MCMSSs containing metastable retained austenite (RA) were investigated by means of electron microscopy, X-ray diffraction (XRD), as well as tensile and impact toughness tests. Results suggest that the microstructure including an area fraction of undissolved M23C6, carbon and chromium content in matrix, prior austenite grain size (PAGS), fraction and composition of RA in studied MCMSSs varies with employed austenitizing temperature. By optimizing austenitizing temperature (1060 °C for 40 min) and tempering (250 °C for 30 min) heat treatments, the MCMSS demonstrates excellent mechanical properties with the ultimate tensile strength of 1740 ± 8 MPa, a yield strength of 1237 ± 19 MPa, total elongation (ductility) of 10.3 ± 0.7% and impact toughness of 94.6 ± 8.0 Jcm−2 at room temperature. The increased ductility of alloys is mainly attributed to the RA with a suitable stability via a transformation-induced plasticity (TRIP) effect, and a matrix containing reduced carbon and chromium content. However, the impact toughness of MCMSSs largely depends on M23C6 carbides.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Przemysław Snopiński ◽  
Mariusz Król ◽  
Marek Pagáč ◽  
Jana Petrů ◽  
Jiří Hajnyš ◽  
...  

AbstractThis study investigated the impact of the equal channel angular pressing (ECAP) combined with heat treatments on the microstructure and mechanical properties of AlSi10Mg alloys fabricated via selective laser melting (SLM) and gravity casting. Special attention was directed towards determining the effect of post-fabrication heat treatments on the microstructural evolution of AlSi10Mg alloy fabricated using two different routes. Three initial alloy conditions were considered prior to ECAP deformation: (1) as-cast in solution treated (T4) condition, (2) SLM in T4 condition, (3) SLM subjected to low-temperature annealing. Light microscopy, transmission electron microscopy, X-ray diffraction line broadening analysis, and electron backscattered diffraction analysis were used to characterize the microstructures before and after ECAP. The results indicated that SLM followed by low-temperature annealing led to superior mechanical properties, relative to the two other conditions. Microscopic analyses revealed that the partial-cellular structure contributed to strong work hardening. This behavior enhanced the material’s strength because of the enhanced accumulation of geometrically necessary dislocations during ECAP deformation.


2012 ◽  
Vol 445 ◽  
pp. 195-200
Author(s):  
Murat Aydin ◽  
Yakup Heyal

The mechanical properties mainly tensile properties, impact toughness and high-cycle fatigue properties, of two-phase Al-20Zn alloy subjected to severe plastic deformation (SPD) via equal-channel angular extrusion (ECAE) using route A up to 2 passes were studied. The ECAE almost completely eliminated as-cast dendritic microstructure including casting defects such as micro porosities. A refined microstructure consisting of elongated micro constituents, α and α+η eutectic phases, formed after ECAE via route A. As a result of this microstructural change, mechanical properties mainly the impact toughness and fatigue performance of the as-cast Al-20Zn alloy increased significantly through the ECAE. The rates of increase in fatigue endurance limit are approximately 74 % after one pass and 89 % after two passes while the increase in impact toughness is 122 %. Also the yield and tensile strengths of the alloy increase with ECAE. However, no considerable change occurred in hardness and percentage elongation of the alloy. It was also observed that the ECAE changed the nature of the fatigue fracture characteristics of the as-cast Al-20Zn alloy.


2013 ◽  
Vol 762 ◽  
pp. 551-555 ◽  
Author(s):  
Marek Stanislaw Węglowski ◽  
Marian Zeman ◽  
Miroslaw Lomozik

In the present study, the investigation of weldability of new ultra-high strength - Weldox 1300 steel has been presented. The thermal simulated samples were used to investigate the effect of welding cooling time t8/5 on the microstructure and mechanical properties of the heat affected zone (HAZ). In the frame of these investigation the microstructure was studied by the light (LM) and transmission electron microscopies (TEM). It has been shown that the microstructure of the Weldox 1300 steel is composed of tempered martensite, and inside the laths the minor precipitations mainly V(CN) and molybdenum carbide Mo2C were observed. Mechanical properties of parent material were analysed by the tensile, impact and hardness tests. In details the influence of cooling time in the range of 2,5 - 300 s. on hardness, impact toughness and microstructure of simulated HAZ was studied by using welding thermal simulation test. The results show that the impact toughness and hardness decrease with the increase of t8/5 under the condition of a single thermal cycle in simulated HAZ. The continuous cooling transformation diagrams (CCT-W for welding conditions) of Weldox 1300 steel for welding purposes was also elaborated. The steel Weldox 1300 for cooling time in the range of 2,5 - 4 s showed martensite microstructure, for time from 4 s to 60 s mixture of martensite and bainite, and for longer cooling time mixture of ferrite, bainite and martensite. The results indicated that the weldability of Weldox 1300 steel is limited and to avoid the cold cracking the preheating procedure or medium net linear heat input should be used.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 978 ◽  
Author(s):  
Pengfei Wang ◽  
Zhaodong Li ◽  
Guobiao Lin ◽  
Shitong Zhou ◽  
Caifu Yang ◽  
...  

Steels used for high-speed train wheels require a combination of high strength, toughness, and wear resistance. In 0.54% C-0.9% Si wheel steel, the addition of 0.075 or 0.12 wt % V can refine grains and increase the ferrite content and toughness, although the influence on the microstructure and toughness is complex and poorly understood. We investigated the effect of 0.03, 0.12, and 0.23 wt % V on the microstructure and mechanical properties of medium-carbon steels (0.54% C-0.9% Si) for train wheels. As the V content increased, the precipitation strengthening increased, whereas the grain refinement initially increased, and then it remained unchanged. The increase in strength and hardness was mainly due to V(C,N) precipitation strengthening. Increasing the V content to 0.12 wt % refined the austenite grain size and pearlite block size, and increased the density of high-angle ferrite boundaries and ferrite volume fraction. The grain refinement improved the impact toughness. However, the impact toughness then reduced as the V content was increased to 0.23 wt %, because grain refinement did not further increase, whereas precipitation strengthening and ferrite hardening occurred.


2018 ◽  
Vol 937 ◽  
pp. 61-67
Author(s):  
Yu Jie Li ◽  
Jin Wei Lei ◽  
Xuan Wei Lei ◽  
Oleksandr Hress ◽  
Kai Ming Wu

Utilizing submerged arc welding under heat input 50 kJ/cm on 60 mm thick marine engineering structure plate F550, the effect of preheating and post welding heat treatment on the microstructure and impact toughness of coarse-grained heat-affected zone (CGHAZ) has been investigated. The original microstructure of the steel plate is tempered martensite. The yield and tensile strength is 610 and 660 MPa, respectively. The impact absorbed energy at low temperature (-60 °C) at transverse direction reaches about 230~270 J. Welding results show that the preheating at 100 °C did not have obvious influence on the microstructure and toughness; whereas the tempering at 600 °C for 2.5 h after welding could significantly reduce the amount of M-A components in the coarse-grained heat-affected zone and thus improved the low temperature impact toughness.


2011 ◽  
Vol 189-193 ◽  
pp. 1132-1136 ◽  
Author(s):  
Yong Xu Zhao ◽  
Wen Jun Hu ◽  
Jun Mei ◽  
Niu Wei ◽  
Jian Jun Xie

After testing on T-type rubber bearing under tensile, compression and shear mechanical properties under different temperature in this paper. Obtained load deflection curve and destructive mode under different loading conditions at -40 and normal temperature of rubber components. Analysis the impact of temperature and the loading conditions that effect on load-elongation and destructive mode of T-type damping rubber structure. It showed that T-end rubber bearing has different kinds of deformation under different force-giving methods. Under compression, the stress pattern of the rubber bearing is three-dimensional and middle rubber bear the greatest force. Under tensile loading, the middle part of the rubber contract and the side with smaller lateral section has greater shrinkage; moreover, damage occurred in the area with stress concentration and weak strength. Under shearing action, extrude faces appeared with crinkle and damage occurred in the middle part of extrude faces. At the low temperature-40 , rubber support still has great elastic properties. The low temperature has a big effect on tensile properties and has little effect on damage properties.


Author(s):  
S Mohan Kumar ◽  
R Sasikumar ◽  
A Rajesh Kannan ◽  
R Pramod ◽  
N Pravin Kumar ◽  
...  

Wire plus arc additive manufacturing (WAAM) technology with higher deposition rate and efficient material utilization was employed to fabricate a stainless steel 321 (SS 321) wall for the first time. In this work, the microstructural characteristics, mechanical properties and corrosion performance of as-built SS 321 were evaluated. The micrographs confirmed the presence of columnar and equiaxed dendrites along the building direction, and recrystallization of grains was noticed due to the re-melting of former layers. The microstructure was dominantly austenite with a small fraction of ferrite within the austenitic matrix. Better tensile properties were noticed for as-printed SS 321 WAAM samples in-comparison to wrought counterpart. This is corroborated to the equiaxed and columnar dendritic microstructure with small fraction of ferrite (FN). The hardness decreased from bottom (247 HV) to top (196 HV) region in SS 321 WAAM plate and is attributed to the microstructural difference with varying amount of ferrite (6.3 to 3.7 FN). The impact strength of samples in the horizontal and vertical direction was 116  ±  2 J and 114  ±  2.5 J respectively, and is comparable with the wrought AISI 321 (123  ±  1.5 J). The reduction in impact toughness is attributed to the ferrite (<6.3 FN) fraction. Polarization curves and Nyquist plots elucidate the excellent pitting resistance of SS 321 WAAM specimens, and the corrosion rate was less than 1 mils per year (mpy). Corrosion cracks were absent, and the passive film formation in the WAAM specimens were compact and highly stable for corrosive environments.


2021 ◽  
Vol 1016 ◽  
pp. 1739-1746
Author(s):  
Yan Mei Li ◽  
Shu Zhan Zhang ◽  
Zai Wei Jiang ◽  
Sheng Yu ◽  
Qi Bin Ye ◽  
...  

The effect of tempering time on the microstructure and mechanical properties of SA738 Gr.B nuclear power steel was studied using SEM, TEM and thermodynamic software, and its precipitation and microstructure evolution during tempering were clarified. The results showed that SA738 Gr.B nuclear power steel has better comprehensive mechanical properties after tempering at 650 °C for 1h. With the extension of the tempering time, M3C transformed into M23C6 with increasing size, which affected the yield strength and impact energy. When the tempering time is 8h ~ 10h, due to the transformation of M3C to M23C6, the composition of matrix around the carbide changed, causing the temperature of Ac1 dropped, forming twin-martensite which deteriorated the impact toughness of the steel.


Sign in / Sign up

Export Citation Format

Share Document