Preparation and Characterization of Li [Mn2-xFex]O4 (x = 0.0-0.6) Spinel Nanoparticles as Cathode Materials for Lithium Ion Battery

2009 ◽  
Vol 67 ◽  
pp. 233-238
Author(s):  
Priti Singh ◽  
Anjan Sil ◽  
Mala Nath ◽  
Subrata Ray

Nanosized powders in the system LiMn2−xFexO4 (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) have been synthesized by sol-gel technique using citric acid as chelating agent. The effect of Fe substitution on the structure and surface morphology of spinel LiMn2O4 has been examined by X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM) and Electrochemical characteristics. The materials for all the compositions except x = 0.6 exhibit a phase pure cubic spinel structure as evident from the XRD analyses. Doping with Fe increases the crystallinity in the materials and decreases the average particle size. The surface morphology of the synthesized particles is spherical and polygonal type. Average particle size lies in the range of 60 to 400 nm. Improved capacity retention in rechargeable 4 V Li/LiMn2-xFexO4 cells has been observed when a small amount of manganese in the spinel cathode is replaced with iron. The first discharge capacities of LiMn2−xFexO4 (x = 0.0, 0.1, 0.2, 0.3) in a voltage range of 3 V to 4.3 V decreases as the x increases, however, the cyclic performance improves.

1997 ◽  
Vol 496 ◽  
Author(s):  
David J. Derwin ◽  
Kim Kinoshita ◽  
Tri D. Tran ◽  
Peter Zaleski

AbstractSeveral types of carbonaceous materials from Superior Graphite Co. were investigated for lithium ion intercalation. These commercially available cokes, graphitized cokes and graphites have a wide range of physical and chemical properties. The coke materials were investigated in propylene carbonate based electrolytes and the graphitic materials were studied in ethylene carbonate / dimethyl solutions to prevent exfoliation. The reversible capacities of disordered cokes are below 230 mAh / g and those for many highly ordered synthetic (artificial) and natural graphites approached 372 mAh / g (LiC6). The irreversible capacity losses vary between 15 to as much as 200 % of reversible capacities for various types of carbon. Heat treated cokes with the average particle size of 10 microns showed marked improvements in reversible capacity for lithium intercalation. The electrochemical characteristics are correlated with data obtained from scanning electron microscopy (SEM), high resolution transmission electron microscopy (TAM), X - ray diffraction (XRD) and BET surface area analysis. The electrochemical performance, availability, cost and manufacturability of these commercial carbons will be discussed.


2017 ◽  
Vol 17 (01n02) ◽  
pp. 1760012
Author(s):  
S. Gowreesan ◽  
A. Ruban Kumar

The scope of the present work is in enhancing the particle size, and dielectric properties of Mg-substituted Cobalt ferrites nanoparticles prepared by sol–gel auto combustion method. The different ratios of Mg-substituted Co Ferrites (Co[Formula: see text]MgxFe2O4([Formula: see text], 0.05, 0.10, 0.15, 0.20 and 0.30)) are calcinated at 850[Formula: see text]C. The synthesized nanoparticles were characterized by powder XRD, FTIR, FE-SEM, EDX techniques and dielectric behavior. The structural parameters were confirmed from powder XRD and the average particle size is obtained from 39 to 67 nm due to the substitution of Mg[Formula: see text] which was calculated by Debye Scherrer’s formula. FE-SEM showed the surface morphology of the different ratio of the sample. The dielectric loss has measured the frequency range of 50[Formula: see text]Hz–5[Formula: see text]MHz. From electrical modulus, conductivity relaxation and thermal activation of charge carriers has been discussed.


2006 ◽  
Vol 510-511 ◽  
pp. 786-789 ◽  
Author(s):  
Dong Sik Bae ◽  
Byung Ik Kim ◽  
Kyong Sop Han

ZnO-TiO2 nanoparticles were synthesized by a reverse micelle and sol-gel process. The average particle size of the colloid was below 30 nm and well dispersed in the solution. ZnOTiO2 composite membranes were fabricated by using the dip-coating method on a porous alumina support. ZnO-TiO2 composite membranes showed a crack-free microstructure and narrow particle size distribution even after the heat treatment up to 600°C. The average particle size of the membrane was 30-40nm, and the pore size of ZnO-TiO2 composite membrane was below 10 nm.


2016 ◽  
Vol 709 ◽  
pp. 66-69
Author(s):  
Jeyashelly Andas ◽  
Rahmah Atikah Rosdi ◽  
Nur Izzati Mohd Anuar

A series of Fe-Co nanoparticles were synthesized via sol-gel route at acidic, neutral and basic condition using rice husk as the silica source. The synthesized nanomaterials were designated as Fe-Co3, Fe-Co7 and Fe-Co9 and characterized by Fourier Transform Infrared (FTIR), Transmission Electron Microscope (TEM) and particle size analyzer. The great effect of pH was clearly evidenced from the shifting in the siloxane bond in the FTIR spectrum. TEM investigation confirmed the existence of discrete and almost sphere like nanoparticles. The particle size decreased with an increase in the pH, registering the smallest average particle size at pH 9. In brief, this study promises a fast, rapid and promising method for the conversion of silica rice husk into nanoscale bimetallic materials.


2007 ◽  
Vol 280-283 ◽  
pp. 671-676 ◽  
Author(s):  
Hong Wei Chan ◽  
Jenq Gong Duh ◽  
Shyang Roeng Sheen

Surface modification on the electrode has a vital impact on lithium-ion batteries, and it is essential to probe the mechanism of the modified film on the surface of the electrode. In this study, a Li2O-2B2O3 film was coated on the surface of the cathode material by solution method. The cathode powders derived from co-precipitation method were calcined with various weight percent of the surface modified glass to form fine powder of single spinel phase with different particle size, size distribution and morphology. The thermogravimetry/differential thermal analysis was used to evaluate the appropriate heat treatment temperature. The structure was confirmed by the X-ray diffractometer along with the composition measured by the electron probe microanalyzer. From the field emission scanning electron microscope image and Laser Scattering measurements, the average particle size was in the range of 7-8µm. The electrochemical behavior of the cathode powder was examined by using two-electrode test cells consisted of a cathode, metallic lithium anode, and an electrolyte of 1M LiPF6. Cyclic charge/discharge testing of the coin cells, fabricated by both coated and un-coated cathode material, provided high discharge capacity. Furthermore, the coated cathode powder showed better cyclability than the un-coated one after the cyclic test. The introduction of the glass-coated cathode material revealed high discharge capacity and appreciably decreased the decay rate after cyclic test.


Author(s):  
Joseph Schwan ◽  
Brandon Wagner ◽  
Minseok Kim ◽  
Lorenzo Mangolini

Abstract The use of silicon nanoparticles for lithium-ion batteries requires a precise control over both their average size and their size distribution. Particles larger than the generally accepted critical size of 150 nm fail during lithiation because of excessive swelling, while very small particles (<10 nm) inevitably lead to a poor first cycle coulombic efficiency because of their excessive specific surface area. Both mechanisms induce irreversible capacity losses and are detrimental to the anode functionality. In this manuscript we describe a novel approach for enhanced growth of nanoparticles to ~20 nm using low-temperature flow-through plasma reactors via pulsing. Pulsing of the RF power leads to a significant increase in the average particle size, all while maintaining the particles well below the critical size for stable operation in a lithium-ion battery anode. A zero-dimensional aerosol plasma model is used to investigate the dynamics of particle agglomeration and growth in the pulsed plasma reactor. The accelerated growth correlates with the shape of the particle size distribution in the afterglow, which is in turn controlled by parameters such as metastable density, gas and electron temperature. The accelerated agglomeration in each afterglow phase is followed by rapid sintering of the agglomerates into single-crystal particles in the following plasma-on phase. This study highlights the potential of non-thermal plasma reactors for the synthesis of functional nanomaterials, while also underscoring the need for better characterization of their fundamental parameters in transient regimes.


2004 ◽  
Vol 847 ◽  
Author(s):  
Christophe Barbé ◽  
Sandrine Calleja ◽  
Linggen Kong ◽  
Elizabeth Drabarek ◽  
Alexandra Bush ◽  
...  

ABSTRACTUsing sol-gel technology combined with water-in-oil (W/O) emulsions, we have developed an innovative method for producing ceramic particles with independent control over the release rate and particle size. The average particle size can be varied from 10 nm to 100 μm and is controlled by the emulsion chemistry. The release rate can be independently varied from mg/hours to mg/month, and is controlled by the internal microstructure of the particles and the initial sol-gel chemistry.


2012 ◽  
Vol 600 ◽  
pp. 190-193 ◽  
Author(s):  
Wei Wei ◽  
Jing Yi Zhang ◽  
Li Ping Wu ◽  
Guo Tong Qin

The hydrophobic silica granular aerogels were synthesized via sol-gel synthesis followed by ambient pressure drying. The tetraethyloxylane (TEOS) was used as original precursor. The aerogels were analyzed using nitrogen adsorption, scanning electron microscopy (SEM) and laser particle size analyzer. It was found that the aerogel was mesoporous material with high surface area. The aerogels were prepared in grain form by dipping into disperse solution in order to adsorption application. The average particle size of the aerogel was controlled by pH and disperse solution volume. The pH also affected gel time. The aerogels were used to absorb phenol from water. The saturated adsorption amount could reach up to 145 mg•g-1.


2021 ◽  
Vol 21 (12) ◽  
pp. 6217-6226
Author(s):  
S. Maitra ◽  
R. Mitra ◽  
T. K. Nath

Supercapacitor and hydrogen-based fuel cells are cheap and environmental-friendly next-generation energy storage devices that are intended to replace Lithium-ion batteries. Metal oxide nanostructures having perovskite crystal structure have been found to exhibit unique electrochemical properties owing to its unique electronic band structure and multiple redox-active ions. Herein, MgTiO3 nanoparticles (MTO-1) were synthesized by wet-chemical sol–gel technique with an average particle size of 50–55 nm, which exhibited superior supercapacitor performance of capacitance (C) = 25 F/g (at 0.25 A/g), energy density (ED) = 17 Wh/kg, power density (PD) = 275 W/kg and 82.41% capacitance retention (after 1000 cycles). Aqueous 1 M Mg(ClO4)2 solution was used as the electrolyte. MTO-1 revealed an overpotential (η) = 1.329 V and Tafel slope (b) = 374 mV/dec towards Oxygen Evolution Reaction (OER) electrocatalyst and exhibited η = 0.914 V and b = 301.4 mV/dec towards Hydrogen Evolution Reaction (HER) electrocatalyst, both in presence of alkaline 1 M KOH solution, making these MgTiO3 nanoparticles very promising for potential use in various technologically important electrochemical applications.


2006 ◽  
Vol 530-531 ◽  
pp. 401-407 ◽  
Author(s):  
I.C. Cosentino ◽  
F.M. Vichi ◽  
E.N.S. Muccillo ◽  
R. Muccillo

Ceramic ZrTiO4 powders were prepared by a modified sol-gel method using zirconium oxychloride and titanium tetraisopropoxide. In situ high temperature X-ray diffraction results show that crystallization of the amorphous gel starts at 400 °C. Singlephase ZrTiO4 nanoparticles were obtained after heat treatment at 450 oC for 1 h. An average particle size of 46 nm has been determined by nitrogen adsorption analysis. After pressing these sinteractive powders, pellets with controlled pore size distribution were obtained by sintering at temperatures as low as 400 oC. The analysis of pores by mercury porosimetry shows an average porosity of 45 %. Pressing and sintering the nanosized powders prepared by that modified sol-gel technique produced pellets that are good candidates to be used in humidity sensing devices.


Sign in / Sign up

Export Citation Format

Share Document