A Comparative Study of the Synthesis of Carbon Nanotubes Using Ni and Fe as Catalyst

2009 ◽  
Vol 67 ◽  
pp. 89-94 ◽  
Author(s):  
Joydip Sengupta ◽  
Sovan Kumar Panda ◽  
Chacko Jacob

The effect of Fe and Ni catalysts on the synthesis of carbon nanotubes (CNTs) using atmospheric pressure chemical vapor deposition (APCVD) was investigated. Distribution of the catalyst particles over the Si substrate was analyzed by atomic force microscopy (AFM). Characterization by X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopic measurements over the grown species is reported. The study clearly shows that the catalyst strongly influences morphology and microstructure of the grown CNTs.

2011 ◽  
Vol 1350 ◽  
Author(s):  
Kasif Teker ◽  
Joseph A. Oxenham

ABSTRACTSilicon carbide (SiC) nanostructures attract interest due to their applications in optoelectronic devices, sensors, and high-power/high temperature electronics. The synthesis of SiC nanowires by chemical vapor deposition using hexamethyldisilane (HMDS) as a source material on SiO2/Si substrate has been investigated. Various catalyst materials, including iron (film and nanoparticles), nickel (film and nanoparticles), and cobalt nanoparticles have been used. The growth runs have been carried out at temperatures between 900 and 1100°C under H2 as carrier gas. 3C-SiC nanowires have successfully been grown at even lower temperatures despite the lower efficiency of source decomposition at low temperatures. The SiC nanowire diameters are in the range of 8 nm to 60 nm, as determined by transmission electron microscopy (TEM). In general, the efficiency of nanowire growth has increased with temperature except the growth on Ni film, which has occasionally resulted in SiC flowers. Higher nanowire density at high temperatures can be attributed to more efficient decomposition of the source at higher temperatures. Further, optical properties of the nanowires have been studied by Fourier transform infrared spectroscopy (FTIR). The fabricated nanowires have also been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and x-ray diffraction (XRD).


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1349 ◽  
Author(s):  
Klaudia Maślana ◽  
Ryszard J. Kaleńczuk ◽  
Beata Zielińska ◽  
Ewa Mijowska

Here, nitrogen-doped carbon nanotubes (CNT-N) were synthesized using exfoliated graphitic carbon nitride functionalized with nickel oxides (ex-g-C3N4-NixOy). CNT-N were produced at 900 °C in two steps: (1) ex-g-C3N4-NixOy reduction with hydrogen and (2) ethylene assisted chemical vapor deposition (CVD). The detailed characterization of the produced materials was performed via atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The possible mechanism of nanotubes formation is also proposed.


1995 ◽  
Vol 403 ◽  
Author(s):  
G. Bai ◽  
S. Wittenbrock ◽  
V. Ochoa ◽  
R. Villasol ◽  
C. Chiang ◽  
...  

AbstractCu has two advantages over Al for sub-quarter micron interconnect application: (1) higher conductivity and (2) improved electromigration reliability. However, Cu diffuses quickly in SiO2and Si, and must be encapsulated. Polycrystalline films of Physical Vapor Deposition (PVD) Ta, W, Mo, TiN, and Metal-Organo Chemical Vapor Deposition (MOCVD) TiN and Ti-Si-N have been evaluated as Cu diffusion barriers using electrically biased-thermal-stressing tests. Barrier effectiveness of these thin films were correlated with their physical properties from Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), Secondary Electron Microscopy (SEM), and Auger Electron Spectroscopy (AES) analysis. The barrier failure is dominated by “micro-defects” in the barrier film that serve as easy pathways for Cu diffusion. An ideal barrier system should be free of such micro-defects (e.g., amorphous Ti-Si-N and annealed Ta). The median-time-to-failure (MTTF) of a Ta barrier (30 nm) has been measured at different bias electrical fields and stressing temperatures, and the extrapolated MTTF of such a barrier is > 100 year at an operating condition of 200C and 0.1 MV/cm.


2020 ◽  
Vol MA2020-02 (24) ◽  
pp. 1750-1750
Author(s):  
Andrea Quintero Colmenares ◽  
Patrice Gergaud ◽  
Jean-Michel Hartmann ◽  
Vincent Delaye ◽  
Nicolas Bernier ◽  
...  

1998 ◽  
Vol 535 ◽  
Author(s):  
P. Kopperschmidt ◽  
S T. Senz ◽  
R. Scholz ◽  
G. Kästner ◽  
U. Gösele ◽  
...  

AbstractWe realized “compliant” substrates in the square centimeter range by twist-wafer bonding of an (100) GaAs handle wafer to another (100) GaAs wafer with a several nm thick epitaxially grown GaAs layer followed by an appropriate back-etch procedure. The twist angle between the two GaAs wafers was chosen between 4 and 15 degrees. The twisted layers were characterized by area scanned X-ray diffraction, optical and electron microscopy and atomic force microscopy. Occasionally we observed regions showing pinholes in the transferred thin twistbonded GaAs layer.After epitaxial deposition of 300 nm InP and InGaAs films with different degrees of mismatch on these substrates, transmission electron microscopy revealed grains which are epitaxially oriented to either the substrate or the twist-bonded layer. The grain boundaries between the twisted and untwisted grains probably collect threading dislocations, thus reducing their density in the areas free of boundaries.


2015 ◽  
Vol 821-823 ◽  
pp. 213-216
Author(s):  
S.M. Ryndya ◽  
N.I. Kargin ◽  
A.S. Gusev ◽  
E.P. Pavlova

Silicon carbide thin films were obtained on Si (100) and (111) substrates by means of vacuum laser ablation of α-SiC ceramic target. The influence of substrate temperature on composition, structure and surface morphology of experimental samples was examined using Rutherford backscattering spectrometry (RBS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), conventional and high-resolution transmission electron microscopy (TEM/HRTEM), atomic force microscopy (AFM), selected area electron diffraction (SAED) and X-ray diffraction (XRD) methods.


2007 ◽  
Vol 2 (2) ◽  
pp. 81-84
Author(s):  
S. N. M. Mestanza ◽  
I. Doi ◽  
N. C. Frateschi

Germanium quantum dots (Ge-QD) were grown by Low Pressure Chemical Vapor Deposition (LPCVD) on Si nucleus previously grown on 3 nm thick SiO2 ultra thin film. Samples were analyzed by atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). We report the analysis of the influence of the nucleation parameters on size and spatial distribution of Ge-QD. AFM images show a Ge-QD density of around 3.6x1010 cm-2, with an 11 nm mean size and 2.9 nm height. Finally, HRTEM investigation shows that the Ge-QD have a crystalline structure, i.e., they are nanocrystals.


2011 ◽  
Vol 467-469 ◽  
pp. 312-315
Author(s):  
Gang Li ◽  
Wen Ming Cheng

Ultra-thin (20 nm) nickel catalyst films were deposited by sputtering on SiO2/Si substrates. At the pretreatments, ammonia (NH3) was conducted for different time in a thermal chemical vapor deposition (CVD) system. Pretreated samples were characterized using atomic force microscopy (AFM). After the pretreatment, acetylene was introduced into the chamber for 10 min, samples were characterized using scanning electron micrograph (SEM) and X-ray diffraction (XRD). It was concluded that NH3 pretreatment was very crucial to control the surface morphology of catalytic metals and thus to achieve the vertical alignment of carbon nanotubes (CNTs). With higher density of the Ni particles, better alignment of the CNTs can be obtained due to steric hindrance effect between neighboring CNTs.


2012 ◽  
Vol 16 (07n08) ◽  
pp. 713-740 ◽  
Author(s):  
José H. Zagal ◽  
Sophie Griveau ◽  
Mireya Santander-Nelli ◽  
Silvia Gutierrez Granados ◽  
Fethi Bedioui

We discuss here the state of the art on hybrid materials made from single (SWCNT) or multi (MWCNT) walled carbon nanotubes and MN4complexes such as metalloporphyrins and metallophthalocyanines. The hybrid materials have been characterized by several methods such as cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electrochemical microscropy (SECM). The materials are employed for electrocatalysis of reactions such as oxygen and hydrogen peroxide reduction, nitric oxide oxidation, oxidation of thiols and other pollutants.


Sign in / Sign up

Export Citation Format

Share Document