Effect of Pd Nanocrystals on Resistive Switching Characteristics in HfOx Memory Devices

2013 ◽  
Vol 684 ◽  
pp. 3-6 ◽  
Author(s):  
Tsung Kuei Kang ◽  
Chih Kai Wang ◽  
Ysung Yu Yang

For resistive random access memory (RRAM), there is an important issue about variations of switching characteristics such as set/reset voltage of resistance state. The variations may result in an incorrect reading operation. Another issue is device yield, which determine whether fabricated memory can be applied in commercial product. We investigated the switching performance of HfOx metal oxide as a resistive switching layer embedded with and without Pd metal nanocrystals. Compared with Pd/HfOx/TiN structure, the memory embedded with Pd metal nanocrystals (Pd/Pd embedded HfOx/TiN) shows high yield, better electrical uniformity and reliability for the flexible electronics application.

2007 ◽  
Vol 124-126 ◽  
pp. 603-606
Author(s):  
Sang Hee Won ◽  
Seung Hee Go ◽  
Jae Gab Lee

Simple process for the fabrication of Co/TiO2/Pt resistive random access memory, called ReRAM, has been developed by selective deposition of Co on micro-contact printed (μ-CP) self assembled monolayers (SAMs) patterns. Atomic Layer Deposition (ALD) was used to deposit TiO2 thin films, showing its ability of precise control over the thickness of TiO2, which is crucial to obtain proper resistive switching properties of TiO2 ReRAM. The fabrication process for Co/TiO2/Pt ReRAM involves the ALD of TiO2 on sputter-deposited Pt bottom electrode, followed by μ-CP with SAMs and then selective deposition of Co. This results in the Co/TiO2/Pt structure ReRAM. For comparison, Pt/TiO2/Pt ReRAM was produced and revealing the similar switching characteristics as that of Co/TiO2/Pt, thus indicating the feasibility of Co replacement with Pt top electrode. The ratios between the high-resistance state (Off state) and the low-resistance state (On state) were larger than 102. Consequently, the selective deposition of Co with μ-CP, newly developed in this study, can simplify the process and thus implemented into the fabrication of ReRAM.


2015 ◽  
Vol 15 (10) ◽  
pp. 7569-7572 ◽  
Author(s):  
Sukhyung Park ◽  
Kyoungah Cho ◽  
Jungwoo Jung ◽  
Sangsig Kim

In this study, we demonstrate the enhancement of the nonlinear resistive switching characteristics of HfO2-based resistive random access memory (ReRAM) devices by carrying out thermal annealing of Al2O3 tunnel barriers. The nonlinearity of ReRAM device with an annealed Al2O3 tunnel barrier is determined to be 10.1, which is larger than that of the ReRAM device with an as-deposited Al2O3 tunnel barrier. From the electrical characteristics of the ReRAM devices with as-deposited and annealed Al2O3 tunnel barriers, it reveals that there is a trade-off relationship between nonlinearity in low-resistance state (LRS) current and the ratio of the high-resistance state (HRS) and the LRS. The enhancement of nonlinearity is attributed to a change in the conduction mechanism in the LRS of the ReRAM after the annealing. While the conduction mechanism before the annealing follows Ohmic conduction, the conduction of the ReRAM after the annealing is controlled by a trap-controlled space charge limited conduction mechanism. Additionally, the annealing of the Al2O3 tunnel barriers is also shown to improve the endurance and retention characteristics.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 504
Author(s):  
Wei-Lun Huang ◽  
Yong-Zhe Lin ◽  
Sheng-Po Chang ◽  
Shoou-Jinn Chang

In this paper, resistive random-access memory (RRAM) with InGaO (IGO) as an active layer was fabricated by radio-frequency (RF) sputtering system and the resistive switching mechanism with the different top electrode (TE) of Pt, Ti, and Al were investigated. The Pt/IGO/Pt/Ti RRAM exhibits typical bipolar resistive switching features with an average set voltage of 1.73 V, average reset voltage of −0.60 V, average high resistance state (HRS) of 54,954.09 Ω, and the average low resistance state (LRS) of 64.97 Ω, respectively. Ti and Al were substituted for Pt as TE, and the conductive mechanism was different from TE of Pt. When Ti and Al were deposited onto the switching layer, both TE of Ti and Al will form oxidation of TiOx and AlOx because of their high activity to oxygen. The oxidation will have different effects on the forming of filaments, which may further affect the RRAM performance. The details of different mechanisms caused by different TE will be discussed. In brief, IGO is an excellent candidate for the RRAM device and with the aids of TiOx, the set voltage, and reset voltage, HRS and LRS become much more stable.


2020 ◽  
Vol 10 (10) ◽  
pp. 3506
Author(s):  
Nayan C. Das ◽  
Se-I Oh ◽  
Jarnardhanan R. Rani ◽  
Sung-Min Hong ◽  
Jae-Hyung Jang

Resistive random-access memory (RRAM) devices are fabricated by utilizing silicon oxynitride (SiOxNy) thin film as a resistive switching layer. A SiOxNy layer is deposited on a p+-Si substrate and capped with a top electrode consisting of Au/Ni. The SiOxNy-based memory device demonstrates bipolar multilevel operation. It can switch interchangeably between all resistance states, including direct SET switching from a high-resistance state (HRS) to an intermediate-resistance state (IRS) or low-resistance state (LRS), direct RESET switching process from LRS to IRS or HRS, and SET/RESET switching from IRS to LRS or HRS by controlling the magnitude of the applied write voltage signal. The device also shows electroforming-free ternary nonvolatile resistive switching characteristics having RHRS/RIRS > 10, RIRS/RLRS > 5, RHRS/RLRS > 103, and retention over 1.8 × 104 s. The resistive switching mechanism in the devices is found to be combinatory processes of hopping conduction by charge trapping/detrapping in the bulk SiOxNy layer and filamentary switching mode at the interface between the SiOxNy and Ni layers.


2011 ◽  
Vol 1292 ◽  
Author(s):  
Jung Won Seo ◽  
Seung Jae Baik ◽  
Sang Jung Kang ◽  
Koeng Su Lim

ABSTRACTThis report covers the resistive switching characteristics of cross-bar type semi-transparent (or see-through) resistive random access memory (RRAM) devices based on ZnO. In order to evaluate the transmittance of the devices, we designed the memory array with various electrode sizes and spaces between the electrodes. To prevent read disturbance problems due to sneak currents, we employed a metal oxide based p-NiO/n-ZnO diode structure, which exhibited good rectifying characteristics and high forward current density. Based on these results, we found that the combined metal oxide diode/RRAM device could be promising candidate with suppressed read disturbances of cross-bar type ZnO RRAM device.


2020 ◽  
Vol 34 (12) ◽  
pp. 2050115
Author(s):  
Liping Fu ◽  
Sikai Chen ◽  
Zewei Wu ◽  
Xiaoyan Li ◽  
Mingyang You ◽  
...  

Sneak current issue of RRAM-based crossbar array is one of the biggest hindrances for high-density memory application. The integration of an addition selector to each cell is one of the most familiar solutions to avoid this undesired cross-talk issue, and resistive switching parameters would affect on the storage density. This paper investigates the potential impact of different resistive switching parameters on crossbar arrays with one-diode one-resistor (1D1R) and one-selector one-resistor (1S1R) architectures. Results indicate that 1S1R architecture is a more scalable technology for high-density crossbar array than 1D1R, and the storage density of 1D1R- and 1S1R-based crossbar array shows little dependence on resistance values of high-resistance state and low-resistance state, which gives a guideline for choosing appropriate selectors for RRAM crossbar array with specific parameters.


Sign in / Sign up

Export Citation Format

Share Document