Optimization of Ti-6Al-4V Flank Milling Parameters Using Taguchi Method

2009 ◽  
Vol 69-70 ◽  
pp. 364-368
Author(s):  
Chang Yi Liu ◽  
Jun Jie Yi ◽  
Wen Hui Zhou ◽  
Cheng Long Chu

This paper presents a study of the Taguchi design methodology, which is applied to optimize flank milling operation parameters when machining titanium alloy Ti-6Al-4V in conventional and high speed regimes. This study includes cutting speed, feed rate and depth of cut. Experimental runs are conducted using an orthogonal array of L9(33), with measurement of surface roughness. ANOVA analyses are carried out to analyze the effect of these operation parameters, and the optimal parameters combination is determined by seeking the best surface roughness. The analysis of result shows that the optimal combination for good surface roughness is high cutting speed, low feed rate. Finally, confirmation run verifies the results, which indicated that Taguchi method is both efficient and effective in determining the Ti-6Al-4V flank milling parameters for the optimization with minimum number of trials.

2009 ◽  
Vol 407-408 ◽  
pp. 608-611 ◽  
Author(s):  
Chang Yi Liu ◽  
Cheng Long Chu ◽  
Wen Hui Zhou ◽  
Jun Jie Yi

Taguchi design methodology is applied to experiments of flank mill machining parameters of titanium alloy TC11 (Ti6.5A13.5Mo2Zr0.35Si) in conventional and high speed regimes. This study includes three factors, cutting speed, feed rate and depth of cut, about two types of tools. Experimental runs are conducted using an orthogonal array of L9(33), with measurement of cutting force, cutting temperature and surface roughness. The analysis of result shows that the factors combination for good surface roughness, low cutting temperature and low resultant cutting force are high cutting speed, low feed rate and low depth of cut.


Author(s):  
Muataz Al Hazza ◽  
Khadijah Muhammad

High speed machining has many advantages in reducing time to the market by increasing the material removal rate. However, final surface quality is one of the main challenges for manufacturers in high speed machining due to the increasing of flank wear rate. In high speed machining, the cutting zone is under high pressure associated with high temperature that lead to increasing of the flank wear rate in which affect the final quality of the machined surface. Therefore, one of the main concerns to the manufacturer is to predict the flank wear to estimate and predict the surface roughness as one of the main outputs of the machining processes. The aim of this study is to determine experimentally the optimum cutting parameters: depth of cut, cutting speed (Vc) and feed rate (f) that maintaining low flank wear (Vb). Taguchi method has been applied in this experiment. The Taguchi method has been universally used in engineering analysis.  JMP statistical analysis software is used to analyse statically the development of flank wear rate during high speed milling of hardened steel AISI D2 to 60 HRD. The experiment was conducted in the following boundaries: cutting speed 200-400 m/min, feed rate of 0.01-0.05 mm/tooth and depth of cut of 0.1-0.2 mm. Analysis of variance ANOVA was conducted as one of important tool for statistical analysis. The result showed that cutting speed is the most influential input factors with 70.04% contribution on flank wear.


Author(s):  
Nhu-Tung Nguyen ◽  
Dung Hoang Tien ◽  
Nguyen Tien Tung ◽  
Nguyen Duc Luan

In this study, the influence of cutting parameters and machining time on the tool wear and surface roughness was investigated in high-speed milling process of Al6061 using face carbide inserts. Taguchi experimental matrix (L9) was chosen to design and conduct the experimental research with three input parameters (feed rate, cutting speed, and axial depth of cut). Tool wear (VB) and surface roughness (Ra) after different machining strokes (after 10, 30, and 50 machining strokes) were selected as the output parameters. In almost cases of high-speed face milling process, the most significant factor that influenced on the tool wear was cutting speed (84.94 % after 10 machining strokes, 52.13 % after 30 machining strokes, and 68.58 % after 50 machining strokes), and the most significant factors that influenced on the surface roughness were depth of cut and feed rate (70.54 % after 10 machining strokes, 43.28 % after 30 machining strokes, and 30.97 % after 50 machining strokes for depth of cut. And 22.01 % after 10 machining strokes, 44.39 % after 30 machining strokes, and 66.58 % after 50 machining strokes for feed rate). Linear regression was the most suitable regression of VB and Ra with the determination coefficients (R2) from 88.00 % to 91.99 % for VB, and from 90.24 % to 96.84 % for Ra. These regression models were successfully verified by comparison between predicted and measured results of VB and Ra. Besides, the relationship of VB, Ra, and different machining strokes was also investigated and evaluated. Tool wear, surface roughness models, and their relationship that were found in this study can be used to improve the surface quality and reduce the tool wear in the high-speed face milling of aluminum alloy Al6061


Author(s):  
Chetan Darshan ◽  
Lakhvir Singh ◽  
APS Sethi

Manufacturers around the globe persistently looking for the cheapest and quality manufactured machined components to compete in the market. Good surface quality is desired for the proper functioning of the produced parts. The surface quality is influenced by cutting speed, feed rate and depth of cut and many other parameters. In the present study attempt has been made to evaluate the performance of ceramic inserts during hard turning of EN-31 steel. The analysis of variance is applied to study the effect of cutting speed, feed rate and depth of cut on Flank wear and surface roughness. Model is found to be statically significant using regression model, while feed and depth of cut are the factor affecting Flank wear and feed is dominating factors for surface roughness. The analysis of variance was used to analyze the input parameters and there interactions during machining. The developed model predicted response factor at 95% confidence level.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5677
Author(s):  
Elshaimaa Abdelnasser ◽  
Azza Barakat ◽  
Samar Elsanabary ◽  
Ahmed Nassef ◽  
Ahmed Elkaseer

This article presents the results of an experimental investigation into the machinability of Ti6Al4V alloy during hard turning, including both conventional and high-speed machining, using polycrystalline diamond (PCD) inserts. A central composite design of experiment procedure was followed to examine the effects of variable process parameters; feed rate, cutting speed and depth of cut (each at five levels) and their interaction effects on surface roughness and cutting temperature as process responses. The results revealed that cutting temperature increased with increasing cutting speed and decreasing feed rate in both conventional and high-speed machining. It was found that high-speed machining showed an average increase in cutting temperature of 65% compared with conventional machining. Nevertheless, high-speed machining showed better performance in terms of lower surface roughness despite using higher feed rates compared to conventional machining. High-speed machining of Ti6Al4V showed an improvement in surface roughness of 11% compared with conventional machining, with a 207% increase in metal removal rate (MRR) which offered the opportunity to increase productivity. Finally, an inverse relationship was verified between generated cutting temperature and surface roughness. This was attributed mainly to the high cutting temperature generated, softening, and decreasing strength of the material in the vicinity of the cutting zone which in turn enabled smoother machining and reduced surface roughness.


2014 ◽  
Vol 699 ◽  
pp. 198-203 ◽  
Author(s):  
Raja Izamshah Raja Abdullah ◽  
Aaron Yu Long ◽  
Md Ali Mohd Amran ◽  
Mohd Shahir Kasim ◽  
Abu Bakar Mohd Hadzley ◽  
...  

Polyetheretherketones (PEEK) has been widely used as biomaterial for trauma, orthopaedic and spinal implants. Component made from Polyetheretherketones generally required additional machining process for finishing which can be a problem especially to attain a good surface roughness and dimensional precision. This research attempts to optimize the machining and processing parameters (cutting speed, feed rate and depth of cut) for effectively machining Polyetheretherketones (PEEK) implant material using carbide cutting tools. Response Surface Methodology (RSM) technique was used to assess the effects of the parameters and their relations towards the surface roughness values. Based on the analysis results, the optimal machining parameters for the minimum surface roughness values were by using cutting speed of 5754 rpm, feed rate of 0.026 mm/tooth and 5.11 mm depth of cut (DOC).


2013 ◽  
Vol 685 ◽  
pp. 57-62
Author(s):  
Seyyed Pedram Shahebrahimi ◽  
Abdolrahman Dadvand

One of the most important issues in turning operations is to choose suitable parameters in order to achieve a desired surface finish. The surface finish in machining operation depends on many parameters such as workpiece material, tool material, tool coating, machining parameters, etc. The purpose of this research is to focus on the analysis of optimum cutting parameters to get the lowest surface roughness in turning Titanium alloy Ti-6Al-4V with the insert with the standard code DNMG 110404 under dry cutting condition, by the Taguchi method. The turning parameters are evaluated as cutting speed of 14, 20 and 28 m/min, feed rate of 0.12, 0.14 and 0.16 mm/rev, depth of cut of 0.3, 0.6 and 1 mm, each at three levels. The Experiment was designed using the Taguchi method and 9 experiments were conducted by this process. The results are analyzed using analysis of variance method (ANOVA). The results of analysis show that the depth of cut has a significant role to play in producing lower surface roughness that is about 63.33% followed by feed rate about 30.25%, and cutting speed has less contribution on the surface roughness. Also it was realized that with the use of the confirmation test, the surface roughness improved by 227% from its initial state.


2018 ◽  
Vol 12 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Gokhan Basar ◽  
Funda Kahraman

In this study, the effect of cutting parameters such as the depth of cut, feed rate, cutting speed and the number of inserts on surface roughness were investigated in the milling of the AISI 4140 steel. The optimal control factors for surface quality were detected by using the Taguchi technique. Experimental trials were designed according to the Taguchi L18 (21x33) orthogonal array. The statistical effects of control factors on surface roughness have been established by using the analysis of variance (ANOVA). Optimal cutting parameters were obtained by using the S/N ratio values. The ANOVA results showed that the effective factors were the number of inserts and the feed rate on surface roughness. However, the depth of cut and the cutting speed showed an insignificant effect. Additionally, the First-order and Second-order regression analysis were conducted to estimate the performance characteristics of the experiment. The acquired regression equation results matched with the surface roughness measurement results. The optimal performance characteristics were obtained as a 0.5 mm depth of cut, 0.08 mm/rev feed rate, 325 m/min cutting speed and 1 number of inserts by using the Taguchi method. Additionally, the confirmation test results indicated that the Taguchi method was very prosperous in the optimization of the machining parameters to obtain the minimum surface roughness in the milling of the AISI 4140 steel.


2014 ◽  
Vol 6 ◽  
pp. 859207 ◽  
Author(s):  
Zhang Huiping ◽  
Zhang Hongxia ◽  
Lai Yinan

Firstly, a single factor test of the surface roughness about tuning 300 M steel is done. According to the test results, it is direct to find the sequence of various factors affecting the surface roughness. Secondly, the orthogonal cutting experiment is carried out from which the primary and secondary influence factors affecting surface roughness are obtained: feed rate and corner radius are the main factors affecting surface roughness. The more the feed rate, the greater the surface roughness. In a certain cutting speed rang, the surface roughness is smaller. The influence of depth of cut to the surface roughness is small. Thirdly, according to the results of the orthogonal experiment, the prediction model of surface roughness is established by using regressing analysis method. Using MatLab software, the prediction mode is optimized and the significance test of the optimized model is done. It showed that the prediction model matched the experiment results. Finally, the surface residual stress test of turning 300 M steel is done and the residual stress of the surface and along the depth direction is measured.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 73
Author(s):  
Mohd Shahfizal Mohd Ruslan ◽  
Haniff Abdul Rahman ◽  
Jaharah Abdul Ghani ◽  
Che Hassan Che Haron ◽  
Mohd Shahir Kassim ◽  
...  

Magnesium alloy is one of the lightest materials with a high strength to weight ratio and excellent machinability, which makes it attractive and suitable for various industrial applications such as automotive and aerospace components. For these particular industrial components, the end products require a mirror-like finish. This article details a statistical analysis about the effect of milling parameters on the surface roughness of Magnesium alloy AZ91D in the dry milling process. The historical data approach in the response surface methodology (RSM) was utilized to determine the cause and effect relationship between the input variables and output response. The effect of milling parameter studied was cutting speed (900 – 1400 m/min), feed rate (0.03 - 0.09 mm/tooth), and radial depth of cut (0.2 - 0.3 mm). The results confirmed that the interaction between feed rate and cutting speed is the primary factor controlling the surface evolution. The responses of various factors were plotted using a two-dimensional interaction graph and the cubic empirical model was developed at 95% confidence level. The optimum condition for achieving the minimum surface roughness was a cutting speed of 977 m/min, a feed rate of 0.02 mm/tooth, and an axial depth of cut of 0.29 mm. With this optimum condition, a surface arithmetic roughness of 0.054 μm is expected. This study confirmed that by milling AZ91D at high speed cutting, it is possible to eliminate the polishing process to achieve a super mirror-like finishing.


Sign in / Sign up

Export Citation Format

Share Document