Electrical Properties of La0.7Sr0.3CuO3-δCathode Based on SDC-YSZ Composite Electrolyte

2013 ◽  
Vol 702 ◽  
pp. 224-228
Author(s):  
Min Zhang Zheng ◽  
Xiao Mei Liu

The cathode material La0.7Sr0.3CuO3-δ was synthesized by a sol-gel method. X-ray diffraction revealed it to be form a single phase of perovskite. The SDC(Sm0.15Ce0.85O1.925)was synthesized by glycine-nitrate processes. The 90%SDC and 10%YSZ powders are mixed to prepare as SDC-YSZ composite electrolyte. The high temperature electrical conductivity of La0.7Sr0.3CuO3-δ was measured by using the four-point dc technique, and cathodic overpotential with SDC-YSZ composite electrolyte support was measured by using a current-interruption technique. Using La0.7Sr0.3CuO3-δ as cathode and 65%NiO/SDC as anode based on SDC-YSZ composite electrolyte one can obtain high current density and power density at intermediate temperatures.

2010 ◽  
Vol 160-162 ◽  
pp. 666-670
Author(s):  
Min Zhang Zheng ◽  
Xiao Mei Liu

To obtain more detail information about the cathode of La0.7Sr0.3Cu1-xFexO3-δ(x= 0.1,0.3,0.5,0.7,0.9)in IT-SOFCs, the cathode material La0.7Sr0.3Cu1-xFexO3-δ(x=0.1, 0.3, 0.5, 0.7, 0.9)was synthesized by a sol-gel method. X-ray diffraction revealed it to be form a single phase of perovskite. The high temperature electrical conductivity was measured by using the four-point dc technique, and cathodic overpotential with SDC(Sm0.15Ce0.85O1.925) electrolyte support was measured by using a current-interruption technique. The investigation of electrocheimical properties suggested that La0.7Sr0.3Cu0.7Fe0.3O3-δ has the highest electrical conductivity and the lowest cathodic polarization. Using La0.7Sr0.3Cu0.7Fe0.3O3-δ as cathode and 65%NiO/SDC as anode based on SDC electrolyte one can obtain higher current density and power density at intermediate temperatures, La0.7Sr0.3Cu0.7Fe0.3O3-δ is considered to be a possible cathode adapted to IT-SOFCs.


2012 ◽  
Vol 545 ◽  
pp. 275-278 ◽  
Author(s):  
Lili Widarti Zainuddin ◽  
Norlida Kamarulzaman

A ceramics sample of LiTaO3 was prepared using a sol-gel method. The sample is annealed at 750 °C for 48 hours. X-ray diffraction analysis indicate the formation of single phase, rhombohedral structure. An ac impedance study was used to analyse the conductivity of LiTaO3 at room temperature and at various temperatures.


2021 ◽  
Vol 66 (1) ◽  
pp. 57-64
Author(s):  
Hang Pham Vu Bich ◽  
Yen Nguyen Hai ◽  
Mai Phung Thi Thanh ◽  
Dung Dang Duc ◽  
Hung Nguyen Manh ◽  
...  

In this study, we present the process of synthesis FexNi1-xMn2O4 (x = 0; 0.1; 0.3; 0.5; 0.7; 0.9; 1) by method sol-gel. Scanning electron microscope results shows that the particle size is about 50 nm. The X-ray diffraction diagram shows that the samples are single phase, changing structure clearly as the x ratio increases from 0 to 1. The lattice constant, the bond length also changes with x-value as shown on the Raman scattering spectrum. The results of the vibrating sample magnetometer show that the magnetism of the material FexNi1-xMn2O4 changes with the value of x and reaches a maximum in the range x from 0.5 to 0.7.


2011 ◽  
Vol 399-401 ◽  
pp. 1447-1450
Author(s):  
Zhi Yong Yu ◽  
Han Xing Liu

The layered LiNi1/2Mn1/2O2 cathode materials were synthesized by a sol gel method. The effects of calcination temperature and time on the structural and electrochemical properties of the LiNi1/2Mn1/2O2 were investigated. The prepared samples were characterized by X-ray diffraction (XRD) and electrochemical analysis. The results revealed that the layered LiNi1/2Mn1/2O2 material could be optimal synthesized at temperature of 900°C for 10h. The sample prepared under the above conditions has the highest initial discharge capacity of 151 mAh/g and showed no dramatic capacity fading during 20 cycles between 2.5-4.5V at a current rate of 20mA/g.


2014 ◽  
Vol 07 (06) ◽  
pp. 1440001 ◽  
Author(s):  
Michał Świętosławski ◽  
Marcin Molenda ◽  
Piotr Natkański ◽  
Piotr Kuśtrowski ◽  
Roman Dziembaj ◽  
...  

Polyanionic cathode materials for lithium-ion batteries start to be considered as potential alternative for layered oxide materials. Among them, Li 2 CoSiO 4, characterized by outstanding capacity and working voltage, seems to be an interesting substitute for LiFePO 4 and related systems. In this work, structural and electrical investigations of Li 2 CoSiO 4 obtained by sol–gel synthesis were presented. Thermal decomposition of gel precursor was studied using EGA (FTIR)-TGA method. Chemical composition of the obtained material was confirmed using X-ray diffraction and energy-dispersive X-ray spectroscopy. The morphology of β- Li 2 CoSiO 4 was studied using transmission electron microscopy. High temperature electrical conductivity of Li 2 CoSiO 4 was measured for the first time. Activation energies of the electrical conductivity of two Li 2 CoSiO 4 polymorphs (β and γ) were determined. The room temperature electrical conductivity of those materials was estimated as well.


2012 ◽  
Vol 512-515 ◽  
pp. 1434-1437
Author(s):  
Xing Ao Li ◽  
Peng Li ◽  
Yong Tao Li ◽  
Jian Ping Yang ◽  
Qiu Fei Bai ◽  
...  

Bi0.95Eu0.05Fe0.95Co0.05O3 Nanoparticles sample was prepared by sol-gel process. The microstructure of samples was analysised by X-ray diffraction(XRD), the result indicated that it was the single phase rhombohedral perovskite structure. The morphology of samples was measured by scanning electron microsopy(SEM), the SEM photograph of samples indicated that the nanoparticles of Bi0.95Eu0.05Fe0.95Co0.05O3 sample were small than that of BiFeO3. The valence states of Fe ions in the samples was analysised by the X-ray absorption spectroscopy(XAS). The XAS of Fe2p showed that it was the mixed valence states (Fe2+ and Fe3+) of Fe ions in samples, and the binding energy of Bi0.95Eu0.05Fe0.95Co0.05O3 was bigger than that of BiFeO3.The magnetic characteristics of the samples were measured by vibrating sample magnetometer (VSM),the results showed that the weak metamagnetism were obtained from clear hysteresis loop and the magnetic saturation reached 0.408emu/g,compared with BiFeO3 sample, the magnetic properties were significantly enhanced.


2009 ◽  
Vol 1166 ◽  
Author(s):  
Haiyan Chen ◽  
Nick Savvides

AbstractMg2Sn ingots, doped p-type by the addition of 0–1.0 at. % Ag, were prepared by the vertical Bridgman method at growth rates ∼0.1 mm/min. The crystalline quality and microstructure of ingots were analyzed by X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The single-phase Mg2Sn ingots consist of highly oriented large grains. Measurements of the Hall coefficient, Seebeck coefficient α, and electrical conductivity σ in the temperature range 80–700 K were conducted to study the dependence on the silver content, and to determine the thermoelectric power factor α2σ which reached a maximum value 2.4×10-3 W m-1 K-2 at 410 K for 1.0 at.% Ag content.


2017 ◽  
Vol 894 ◽  
pp. 89-93
Author(s):  
Mitch Irene Kate N. Galvan ◽  
Leslie Joy L. Diaz

With the current trend of miniaturization and portability of electronic gadgets, the development of polymer composite electrolyte (PCE) gained much research interest. In this study PAN matrix was plasticized with various dimethyl formamide (DMF)/ propylene carbonate (PC) ratios. X-ray diffraction (XRD) analysis revealed that both DMF and PC reduce the crystallinity of PAN. Yet, films with higher amount of PC caused much decrease in crystallinity, which is indicated by lowering of full with at half maximum (FWHM) at the utmost 57% when the DMF/PC ratio is 1:2. Differential scanning calorimetry (DSC) analysis also revealed that glass transition temperature (Tg) of PAN decreased from 83.34°C to 50.27°C when plasticized with pure DMF and to temperature lower than ambient condition when PC alone was used. Upon incorporation of 15 wt% Li-MMT, PCEs with pure DMF exhibited the highest electrical conductivity, which is 3.6x10-8 S/cm based on electrochemical impedance spectroscopy (EIS). This suggests that the electrical conductivity is not dictated by the decrease on polymer host crystallinity alone. The type of plasticizer and appropriate combination was shown to have an effect wherein the plasticizer that causes higher degree of solvation and has lower boiling point is thought to provide more hopping sites for electrons due to higher amount of broken bonds in the nitrile group of PAN.


2013 ◽  
Vol 209 ◽  
pp. 177-181 ◽  
Author(s):  
Ram S. Barkule ◽  
D.V. Kurmude ◽  
A.V. Raut ◽  
N.N. Waghule ◽  
K.M. Jadhav ◽  
...  

Abstract: The magnetic nano-particles of nickel ferrite were synthesized successfully by sol-gel auto-combustion method using high purity metal nitrates and citric acid as chelating agent. The as prepared powder of nickel ferrite was sintered at 5500C for 5 hr to obtain good crystalline phase and was used for further study. The X-ray diffraction technique was employed to confirm the single phase formation of nickel ferrite nano-particles. The X-ray diffraction pattern shows the Bragg’s peak which belongs to cubic spinel structure. The values of lattice constant, X-ray density, oxygen parameter and radii of tetrahedral and octahedral sites were calculated from XRD data. The average crystallite size was estimated using Scherrer’s formula and found to be 6 nm. The temperature dependence of the electrical conductivity plot shows the kink, which can be attributed to ferromagnetic-paramagnetic transition. The activation energy obtained from resistivity plots in paramagnetic region is found to be more than that in ferrimagnetic region. The conduction mechanism in these nickel ferrite nano-particles has been discussed on the basis of hopping of electrons.


2013 ◽  
Vol 789 ◽  
pp. 87-92 ◽  
Author(s):  
Dwita Suastiyanti ◽  
Bambang Soegijono ◽  
M. Hikam

The formation of barium hexaferrite, BaFe12O19 single phase with nanosize crystalline is very important to get the best performance especially magnetic properties. The samples were prepared by sol gel method in citric acid-metal nitrates system. Hence the mole ratios of Ba2+/Fe3+ were varied at 1:12 and 1:11.5 with pH of 7 in all cases using ammonia solution. The solution was then heated at 80-90°C for 3 to 4 hours. Then it was kept on a pre-heated oven at 150°C. The samples were then heat treated at 450°C for 24 hours. Sintering process was done at 850°C and 1000°C for 10 hours.Crystallite size was calculated by X-Ray Diffraction (XRD) peaks using scherrer formula. To confirm the formation of a single phase, XRD analyses were done by comparing the sample patterns with standard pattern. The peak shifting of pattern could be seen from XRD pattern using rocking curves at extreme certain 2θ. It was used MPS Magnet Physik EP3 Permagraph L to know magnetic characteristics. This method can produce BaFe12O19 nanosize powder, 22-34 nm for crystallite size and 55.59-78.58 nm for particle size. A little diference in nanosize affects the peak shifting of XRD pattern significantly but shows a little difference in magnetic properties especially for samples at 850°C and 1000°C with mole ratio of 1:12 respectively. The well crystalline powder is formed at mole ratio of 1:11.5 at 850°C since it has the finest particle (55.59 nm) and crystalline (21 nm), the highest remanent magnetization (0.161 T) and the lowest intrinsic coersive (275.8 kA/m). It is also fitting exactly to the standard diffraction pattern with the highest value of best Figure of Merit (FoM), 90%. XRD peak position of this sample is almost same with XRD peak position of another sample with sinter temperature 1000°C at same mole ratio.


Sign in / Sign up

Export Citation Format

Share Document