A Study of Chatter Stability Domain in Different Phases of Milling Process of Thin-Wall Component

2013 ◽  
Vol 711 ◽  
pp. 137-142
Author(s):  
Wei Wei Liu ◽  
Yuan Yuan Cai ◽  
Feng Li ◽  
Xiao Yan Li ◽  
Xu Sheng Wan

Aeronautical thin-wall components are widely used in Aero-Engine, and the machining stability of the thin-wall components is a difficulty issue. In this paper, a single freedom dynamic model is set up to describe the dynamics of thin-wall milling process, and the stability of the dynamic model is analyzed with the discretization method. Then the modal parameters are gained in the different milling phases and the resonance region of spindle speed is proposed. Optimize the milling parameters with the chatter stability domain at different milling phases. The result shows that the cutting chatter can be restrained if getting the spindle speedcutting depth parameters considering the superposition area of chatter stability domains and avoiding the resonance region in the different milling phases. At last, the method is applied in Aero-Engine thin-wall blade milling, the metal remove rate increases greatly and the machining accuracy is improved greatly.

2011 ◽  
Vol 697-698 ◽  
pp. 129-132 ◽  
Author(s):  
Bing Han ◽  
Cheng Zu Ren ◽  
X.Y. Yang ◽  
Guang Chen

The deflection of Aluminum alloy thin-wall workpiece caused by the milling force leads to additional machining errors and reduces machining accuracy. In this paper, a set of experiments of milling thin-wall workpiece were carried out to study the deflection of thin-wall workpiece. The workpieces, with different types of material and different thicknesses, were machined on CNC machining center. The deflections of workpiece were measured by a three-coordinate measuring machine. Effects of Aluminum alloy material and thickness on deflection are discussed based on the experimental data.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 88
Author(s):  
Yupeng Xin ◽  
Yuanheng Li ◽  
Wenhui Li ◽  
Gangfeng Wang

Cavities are typical features in aeronautical structural parts and molds. For high-speed milling of multi-cavity parts, a reasonable processing sequence planning can significantly affect the machining accuracy and efficiency. This paper proposes an improved continuous peripheral milling method for multi-cavity based on ant colony optimization algorithm (ACO). Firstly, by analyzing the mathematical model of cavity corner milling process, the geometric center of the corner is selected as the initial tool feed position. Subsequently, the tool path is globally optimized through ant colony dissemination and pheromone perception for path solution of multi-cavity milling. With the advantages of ant colony parallel search and pheromone positive feedback, the searching efficiency of the global shortest processing path is effectively improved. Finally, the milling programming of an aeronautical structural part is taken as a sample to verify the effectiveness of the proposed methodology. Compared with zigzag milling and genetic algorithm (GA)-based peripheral milling modes in the computer aided manufacturing (CAM) software, the results show that the ACO-based methodology can shorten the milling time of a sample part by more than 13%.


Author(s):  
Qiangang Zheng ◽  
Yong Wang ◽  
Chongwen Jin ◽  
Haibo Zhang

The modern advanced aero-engine control methods are onboard dynamic model–based algorithms. In this article, a novel aero-engine dynamic modeling method based on improved compact propulsion system dynamic model is proposed. The aero-engine model is divided into inlet, core engine, surge margin and nozzle models for establishing sub-model in the compact propulsion system dynamic model. The model of core engine is state variable model. The models of inlet, surge margin and nozzle are nonlinear models which are similar to the component level model. A new scheduling scheme for basepoint control vector, basepoint state vector and basepoint output vector which considers the change of engine total inlet temperature is proposed to improve engine model accuracy especially the steady. The online feedback correction of measurable parameters is adopted to improve the steady and dynamic accuracy of model. The modeling errors of improved compact propulsion system dynamic model remain unchanged when engine total inlet temperature of different conditions are the same or changes small. The model accuracy of compact propulsion system dynamic model, especially the measurable parameters, is improved by online feedback correction. Moreover, the real-time performance of compact propulsion system dynamic model and improved compact propulsion system dynamic model are much better than component level model.


2020 ◽  
Vol 206 ◽  
pp. 03023
Author(s):  
Qing Mao ◽  
Sen Wang ◽  
Shugui Liu

High machining accuracy of aero-engine blade largely determines the carrying capacity, endurance, acceleration and the dynamic performance of the aero-engine, so a reliable machining error inspection and evaluation technique is imperative. In order to give a reliable error evaluation, the non- uniform rational B-spline (NURBS) technique is adopted to reconstruct the surface within a specified accuracy. Usually, data points measured from aero-engine blade are non-grid data in situ measuring systems. To overcome the difficulty of NURBS surface fitting from non-grid data, a new method based on data conversion is proposed, in which chord length parameterization and uniform parameter sampling are combined together to realize the data convertation, and subsequently hierarchical fitting strategy is applied to finish the NURBS surface reconstruction. The way proposed for data conversion is easy to realize, and by which gemetrical features of original measured data are also reserved well, which make the whole method outstanding in low time cost. Experimental results show that the method is fast, effective. The source code has been implemented in VC++, while the resulting pictures are constructed in Matlab with the obtained control points, knot vectors, and the orders.


2020 ◽  
Vol 10 (10) ◽  
pp. 3646 ◽  
Author(s):  
Yonggang Mei ◽  
Rong Mo ◽  
Huibin Sun ◽  
Bingbing He ◽  
Kun Bu

Cutting chatter is extremely harmful to the machining process, and it is of great significance to eliminate chatter through analyzing the stability of the machining process. In this work, the stability of the milling process with multiple delays is investigated. Considering the regeneration effect, the dynamics of the milling process with variable pitch cutter is modeled as periodic coefficients delayed differential equations (DDEs) with multiple delays. An adaptive variable-step numerical integration method (AVSNIM) considering the effect of the helix angle is developed firstly, which can discretize the cutting period accurately, thereby improving the calculation accuracy of the stability limit of the milling process. The accuracy and efficiency of the AVSNIM are verified through a benchmark milling model. Subsequently, a novel spindle speed-dependent discretization algorithm is proposed, which is combined with the AVSNIM to further reduce the calculation time of the stability lobes diagram (SLD). The simulation experiment results demonstrate that the proposed algorithm can effectively reduce the calculation time.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4056
Author(s):  
Kai Zhang ◽  
Xinkuo Jiang ◽  
Shiyang Li ◽  
Bin Huang ◽  
Shuai Yang ◽  
...  

Annular seals of turbomachinery usually suffer from various degrees of eccentricities and disturbances due to the rotor–stator misalignment and radial loads, while the discussion of annular seal under both large static eccentricities and dynamic disturbances is relatively limited. In this paper, the applicability of linear assumption and reliability of nonlinear dynamic model for eccentric annular seals under large eccentricities and disturbances is discussed based on the investigation of seals with various rotor motions through computational fluid dynamics (CFD). After the validation of transient CFD methods by comparison with experimental and bulk theory results, the dynamic behaviors of annular seal are analyzed by adopting both direct transient simulations and the nonlinear Muszynska model. The results show that the nonlinear dynamic model based on rotor circular whirls around seal center can predict the fluid excitations of different types of rotor motions well under small static eccentricities, while it is limited severely with large static eccentricities, which indicates that the dynamic characteristics of annular seal under large eccentricities are related with the rotor’s motion ways. The paper provides a reference for studies of rotor–seal system with complex rotor motions considering radial loads or running across the resonance region.


2017 ◽  
Vol 868 ◽  
pp. 166-171
Author(s):  
Zhing Yong Li ◽  
Xiu Ting Wei ◽  
Wen Wen Lu ◽  
Qing Wei Cui

By the cooling holes in aero-engine turbine blade as the research object, this study focuses on two kinds of ECM methods, which are mix gas added to the nonlinear electrolyte (NaNO3) and non-mixed gas. Mixed and non-mixed gas ECM experiments of turbine blade cooling holes were carried out respectively. The corresponding two-dimensional CAD model of cooling hole was constructed combined with the experimental data and theoretical analysis. Numerical simulation analysis was carried out of the flow field base on the above models by using the fluid dynamics analysis software FLUENT. The influence flow velocity and flow velocity distribution on the machining accuracy and efficiency of ECM were investigated in detail. The vortex zone distribution of gas-NaNO3 mixed phase flow field and single NaNO3 solution flow field was analyzed qualitatively. The simulation results indicated that the flow velocity in the machining gap with mixed gas was significantly higher than the velocity during ECM process for cooling holes. The electrolytic products and heat were washed away completely, the electrolyte can be updated in time. Fluid vortex zone distribution was improved obviously, the flow field distribution became more uniform after mixed gas in ECM process. The machining accuracy and efficiency for cooling holes making may be improved greatly with gas mixed in electrolyte NaNO3.


2020 ◽  
Vol 10 (5) ◽  
pp. 1685 ◽  
Author(s):  
Khoi Bui Phan ◽  
Hai Thanh Ha ◽  
Sinh Vinh Hoang

This study presents a method of controlling robots based on fuzzy logic to eliminate the effect of uncertainties that are generated by the cutting forces in milling process. The common method to control industrial robots is based on the robot dynamic model and the differential equations of motion to compute the control values. The quantities in the differential equations of the motion of robots are complex and difficult to determine fully and accurately. The interaction forces between the cutting tool and the workpiece are the cutting forces, which are generated during the machining process. It is difficult to calculate the cutting force because it depends on many factors such as material of the machining part, depth of cut, feed rate, etc. This article presents the fuzzy rule system and the selection of the physical value domain of input and output variables of the fuzzy controller. The fuzzy rules are applied in this article to allow us to compute the driving forces based on the errors of input and output signals of the joint positions and velocities, thereby avoiding the calculation of cutting forces. This article shows the simulation results of the fuzzy controller and comparison with the results of the conventional controller when the dynamic model is assumed to be correctly determined. The achieved results are reliable and facilitate the research and application of a fuzzy controller to mechanical processing robots in general and milling machining in particular.


2016 ◽  
Vol 1812 ◽  
pp. 65-70 ◽  
Author(s):  
S. Puma-Araujo ◽  
D. Olvera-Trejo ◽  
A. Elías-Zuñiga ◽  
O. Martínez-Romero ◽  
C.A. Rodríguez

ABSTRACTThe aerospace and automotive industries demand the development of new manufacturing processes. The productivity during machining of very flexible aerospace and automotive aluminum components is limited for self-excited vibrations. New solutions are needed to suppress vibrations that affect the accuracy and quality of the machined surfaces. Rejection of one piece implies an increase in the manufacturing cost and time. This paper is focused on the design, manufacturing and characterization of a magnetorheological damper. The damper was attached to a thin-floored component and a magnetic field was controlled in order to modify the damping behavior of the system. The dynamics of the machining process was developed by considering a three-degree-of-freedom model. This study was experimentally validated with a bull-nose end milling tool to manufacture monolithic parts with thin wall and thin floor. Experimental tests and characterization of the magnetorheological damper permitted to improve the surface finish and productivity during the machining of thin-floored components. A further aim of this paper was to develop a rheological damper by using magnetorheological fluids (MR) to change the thin floor rigidity with voltage. The stability of the milling process was also analytically described considering one, two or three degrees of freedom, using a mathematical integration model based on the Enhanced Multistage Homotopy Perturbation Method (EMHPM).


Sign in / Sign up

Export Citation Format

Share Document