Analysis of Environmental Impact Factors of Natural Draft Cooling Towers in Power Plant

2013 ◽  
Vol 726-731 ◽  
pp. 1436-1440 ◽  
Author(s):  
Feng Ding ◽  
Xin Bo

Based on the requirements of Air Clean guidelines (VDI3784 and VDI3945) in German for cooling tower plume rise and dispersion model, a comparative analysis of atmospheric environmental impact of the cooling tower exhaust for different parameters. Parameters includes different source emission parameters and ambient humidity parameters. Then, analysis of the impact factors of plume rising height and the ground concentration according to the emission parameters. The results show that the most influential parameters are temperature and gas flow rate, relatively, the flue gas relative humidity and liquid water content has less influence in the rising height. Therefore, the increase of flue gas flow rate will significantly strengthen the dispersion of pollutants in the air. The flue gas humidity and liquid water have a certain influence on the dispersion of pollutants, but the effect is not so significant. The increase of flue gas humidity and liquid water content is not conducive to the dispersion of pollutants, therefore the surface concentration will only increase slightly.

2004 ◽  
Vol 30 (6) ◽  
pp. 758-761
Author(s):  
Tomio MIMURA ◽  
Yasuyuki YAGI ◽  
Masaki IIJIMA ◽  
Ryuji YOSIYAMA ◽  
Takahito YONEKAWA

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ziyi Qu ◽  
Li Zhang ◽  
Yunfei Yan ◽  
Shunxiang Ju

Hollow fiber membrane contactor is a new, highly efficient, and the most promising technology for CO2absorption in flue gas. There is still SO2that exists in the flue gas after desulfurization tower of power plant. This paper studied the influence of SO2on CO2absorption characteristic in flue gas by hollow fiber membrane contactor with absorbent of EDA, EDA + MEA (0.6 : 0.4), and EDA + MEA + PZ (0.4 : 0.4 : 0.2). The influences of SO2concentration, cycle absorption and desorption characteristic of absorbent, absorbent concentration, and liquid-gas flow rate ratio are studied to analyze the influence of SO2on CO2absorption characteristic. The appropriate absorbent composition ratio and appropriate parameter range that can inhibit the influence of SO2are proposed by studying the hybrid sorbent with activating agent, appropriate absorbent concentration, and ratio of liquid-gas flow rate. Among the three kinds of absorbents, EDA + MEA + PZ (0.4 : 0.4 : 0.2) had the best tolerance ability to SO2and the highest efficiency. With comprehensive consideration of CO2removal efficiency and operating cost, under the condition of 1000 ppm SO2, the appropriate concentration and liquid-gas flow rate ratio of EDA, EDA + MEA, and EDA + MEA + PZ are proposed.


2017 ◽  
Vol 579 ◽  
pp. 1822-1830 ◽  
Author(s):  
Haobo Tan ◽  
Mingfu Cai ◽  
Qi Fan ◽  
Li Liu ◽  
Fei Li ◽  
...  

2014 ◽  
Vol 884-885 ◽  
pp. 261-265
Author(s):  
Bao Lin Li ◽  
Ming Yu Li ◽  
Hai Hao Liu ◽  
Gang Cao ◽  
Gang Ren ◽  
...  

This paper presented a new method of absorption-oxidation-reduction which used ferrous sulfate solution as absorbent, oxygen as oxidizer and urea as reducer to remove NOX from flue gas based on the properties of Fe2+, NO, [Fe (NO)]2+ and urea. These properties included that Fe2+ and NO could produce [Fe (NO)]2+, furthermore [Fe (NO)]2+ was easy to be oxidized by O2, as well as urea can reduce HNO2 and HNO3 in the absorption liquid. This research was to discuss its absorption and removal mechanism with the influence of the initial urea concentration, pH value, initial NOX concentration and gas flow rate on the NOX removal efficiency. The results showed that the removal efficiency of NOX would increase when the initial concentration of urea and NOX increased, while the pH value and gas flow rate decreased.


2021 ◽  
Vol 11 (18) ◽  
pp. 8592
Author(s):  
Liang Yang ◽  
Yunkai Cai ◽  
Lin Lu

A dielectric barrier discharge (DBD) reactor combined with a wet scrubbing tower was used to carry out an experimental study on desulfurization and denitrification. The effects of the packing type, packing height, spray density, mass fraction of the NaOH solution, discharge power in the DBD reactor, and simulated flue gas flow rate on the desulfurization and denitrification efficiency were analyzed, along with the influence weight of each factor, using orthogonal testing. The experimental results showed that SO2 was easily absorbed by the scrubbing solution, while the desulfurization efficiency remained at a high level (97–100%) during the experiment. The denitration efficiency was between 12 and 96% under various operating conditions. Denitration is the key problem in this system. The influence weights of the DBD power, simulated flue gas flow rate, mass fraction of the NaOH solution, spray density, packing type, and packing height on the denitration efficiency were 56.96%, 18.02%, 11.52%, 5.02%, 4.33%, and 4.16%, respectively. This paper can provide guidance to optimize the desulfurization and denitrification efficiency of this DBD reactor combined with a wet scrubbing system.


Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 29
Author(s):  
Giorgio Vilardi ◽  
Nicola Verdone

Simulations of two incineration processes, with and without flue gas recirculation, have been carried out performing an exergy analysis to investigate the most critical equipment unit in terms of second-law efficiency. Flue gas from the economizer outlet is employed to partially replace secondary combustion air to reduce, at the same time, incinerator temperature and oxygen concentration. Conversely, in the proposed configuration, the recirculated flue gas flow rate is used to control incinerator temperature, while the air flow rate is used to control the oxygen content of the fumes, leaving the incinerator as close to 6% as possible—i.e., the minimum allowed for existing plants to ensure completion of the combustion reactions and according to environmental regulations—and determines the corresponding minimum flue gas flow rate. The flue gas recirculation guarantees a larger level of energy recovery (up to +3%) and, at the same time, lower investment costs for the lower flow rate of fumes actually emitted if compared to the plant configuration without flue gas recirculation. Various operating parameters were varied (incinerator’s effluent gas temperature, air flowrate and flue gas recirculation flowrate) to investigate their influence on process exergy efficiency. Exergy analysis allowed the individuation of the equipment units characterized by larger exergy destruction and demonstrated that the flue gas recirculation led to an overall process exergy efficiency increase of about 3%.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 804 ◽  
Author(s):  
Cheng ◽  
Zhang ◽  
Chen

In this work, a ceramic membrane tube with a pore size of 1 μm was used to conduct experimental research on moisture and waste heat recovery from flue gas. The length, inner/outer diameter, and porosity were 800 mm, 8/12 mm, and 27.2%, respectively. In the experiments, the flue gas, which was artificially prepared, flowed on the shell side of membrane module. The water coolant passed through the membrane counter-currently with the gas. The effects of flue gas flow rate, flue gas temperature, water coolant flux, and water coolant temperature on the membrane recovery performance were analyzed. The results indicated that, upon increasing the flue gas flow rate and its temperature, both the amount of recycled water and the recovered heat increased. The amount of recycled water, recycled water rate, recovered heat, and heat recovery rate all decreased as the water coolant temperature increased. When the water coolant temperature exceeded 30 °C, the amount of recycled water dropped sharply. The maximum amounts of recycled water, recovered heat, and total heat transfer coefficient were 2.93 kg/(m2·h), 3.63 kW/m2, and 224.3 W/(m2·K), respectively.


2013 ◽  
Vol 742 ◽  
pp. 323-326 ◽  
Author(s):  
Ji Wu Li ◽  
Zhi Peng Tang ◽  
Jie Yu

The effects of the supply voltage, water flow rate, concentration of H2O2absorption and flue gas flow rate on NO removal rate were studied. The chemical reaction mechanism of NO removal was discussed. It was concluded that the NO removal rate increased the increasing of supply voltage, water flow rate and concentration of H2O2, and decreased with the increasing of the flue gas flow rate on the experimental conditions. On the synergy with corona discharge and H2O2solution oxidation, NO removal rate reached 60.2%.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1022
Author(s):  
Debo Li ◽  
Ning Zhao ◽  
Yongxin Feng ◽  
Zhiwen Xie

The desulfurization wastewater evaporation technology with flue gas has been widely applied to dispose of desulfurization wastewater. This paper investigates the effect of flue gas flow rate and temperature, wastewater flow rate and initial temperature, and droplet size on the evaporation performance of the desulfurization wastewater in a spray drying tower without deflectors. The results show that the flue gas flow rate and temperature affect the evaporation performance of desulfurization wastewater. The larger flow rate and higher temperature of flue gas correspond to the faster evaporation speed and the shorter complete evaporation distance of the wastewater droplet. Decreasing the flow rate and increasing the initial temperature of the desulfurization wastewater is advantageous to enhance the evaporation speed and shorten the complete evaporation distance of the wastewater droplet. Reducing the droplet size is beneficial to improve the evaporation performance of the desulfurization wastewater. The orthogonal test results show that the factors affecting droplet evaporation performance are ranked as follows: flue gas flow rate > wastewater flow rate > flue gas temperature > wastewater initial temperature > droplet size. Considering the evaporation ratio and the complete evaporation distance, the optimal setting is 14.470 kg/s for flue gas flow rate, 385 °C for flue gas temperature, 0.582 kg/s for wastewater flow rate, 25 °C for wastewater initial temperature, and 60 μm for droplet size. These studied results can provide valuable information to improve the operational performance of the desulfurization wastewater evaporation technology with flue gas.


Sign in / Sign up

Export Citation Format

Share Document