Elimination of EDTA in Aqueous Solution by Bimetallic Al-Fe Process

2013 ◽  
Vol 726-731 ◽  
pp. 2398-2402
Author(s):  
Xin Liu ◽  
Jin Hong Fan ◽  
Lu Ming Ma

Oxidative degradation of ethylenediaminetetraacetic acid(EDTA) in aqueous solution at normal temperature and pressure by the novel bimetallic Al-Fe was investigated. The results showed that the removal efficiency of EDTA, TOC and TN could be about 98%, 75% and 47% respectively after 3h reaction. The effects of initial pH, concentration of EDTA, mass ratio of Al0and Fe0and Al-Fe loading were also investigated. Significantly, the bimetallic Al-Fe process exhibited higher reactivity than monometallic Fe0/Al0process for the degradation of EDTA.

2013 ◽  
Vol 800 ◽  
pp. 555-559
Author(s):  
Xin Liu ◽  
Jin Hong Fan ◽  
Lu Ming Ma

Oxidative degradation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution at room temperature and pressure by the bimetallic Al-Fe/O2 process, which was verified by the addition of benzoic acid as ·OH scavenger and the detection of para-hydroxybenzoic acid, was investigated. The results showed that the removal efficiency of EDTA, TOC and TN could be about 98%, 77.5% and 43% respectively after 3h reaction when the initial pH was 5. The effects of initial pH, concentration of EDTA, mass ratio of Al0 and Fe0 and Al-Fe loading were also investigated. Significantly, the bimetallic Al-Fe process exhibited higher reactivity than monometallic Fe0/Al0 process for the degradation of EDTA when the mass ratio of Al0 and Fe0 ranged from 0.11 to 2.97.


2013 ◽  
Vol 779-780 ◽  
pp. 21-25
Author(s):  
Xin Liu ◽  
Jin Hong Fan ◽  
Lu Ming Ma

Oxidative degradation of ethylenediaminetetraacetic acid in aqueous solution at normal temperature and pressure by the bimetallic Fe-Cu, which was verified by ESR spectroscopy, was investigated. The results showed that the removal efficiency of EDTA, TOC and TN could be about 99%, 60% and 39% respectively after 3h reaction. The degradation products were iminodiacetate, formate and acetate. The effects of initial pH, concentration of EDTA, Cu content and Fe-Cu loading were also investigated. Significantly, the bimetallic Fe-Cu process exhibited higher reactivity than monometallic Fe0process for the degradation of EDTA and it would not cause new heavy metal pollution in effluent.


Author(s):  
Haiyan Song ◽  
Wei Liu ◽  
Fansheng Meng ◽  
Qi Yang ◽  
Niandong Guo

Nanoscale zero-valent iron (nZVI) has attracted considerable attention for its potential to sequestrate and immobilize heavy metals such as Cr(VI) from an aqueous solution. However, nZVI can be easily oxidized and agglomerate, which strongly affects the removal efficiency. In this study, graphene-based nZVI (nZVI/rGO) composites coupled with ultrasonic (US) pretreatment were studied to solve the above problems and conduct the experiments of Cr(VI) removal from an aqueous solution. SEM-EDS, BET, XRD, and XPS were performed to analyze the morphology and structures of the composites. The findings showed that the removal efficiency of Cr(VI) in 30 min was increased from 45.84% on nZVI to 78.01% on nZVI/rGO and the removal process performed coupled with ultrasonic pretreatment could greatly shorten the reaction time to 15 min. Influencing factors such as the initial pH, temperature, initial Cr(VI) concentration, and co-existing anions were studied. The results showed that the initial pH was a principal factor. The presence of HPO42−, NO3−, and Cl− had a strong inhibitory effect on this process, while the presence of SO42− promoted the reactivity of nZVI/rGO. Combined with the above results, the process of Cr(VI) removal in US-nZVI/rGO system consisted of two phases: (1) The initial stage is dominated by solution reaction. Cr(VI) was reduced in the solution by Fe2+ caused by ultrasonic cavitation. (2) In the following processes, adsorption, reduction, and coprecipitation coexisted. The addition of rGO enhanced electron transportability weakened the influence of passivation layers and improved the dispersion of nZVI particles. Ultrasonic cavitation caused pores and corrosion at the passivation layers and fresh Fe0 core was exposed, which improved the reactivity of the composites.


2021 ◽  
Author(s):  
Rongjie Yi ◽  
Qi Zhang ◽  
Chengwu Yi

The degradation of oxacillin in aqueous solution by strong ionization dielectric barrier discharge (DBD) was explored. The effects of input voltage, initial pH, initial concentration of solution and hydroxyl (·OH) inhibitor on the removal efficiency of OXA were investigated. The results showed that the removal efficiency of OXA with initial concentration of 20mg/L reached 91.5% under the optimal treatment conditions of 3.8 kV and 7.3 pH. With the higher voltage and the lower initial concentration, the removal effect was better. The pH of the solution has little effect on the removal efficiency, and the removal effect is the best in neutral aqueous solution. The inhibition effect of TBA was stronger than that of CO32- and HCO3-. Moreover, ·OH was the main active substance in the process of strong ionization discharge, which played a major role in the removal of OXA. In addition, two main by-products were identified, the transformation pathways including hydroxylation (+16 Da), decarboxylation (-44 Da) were observed. This study provided a theoretical basis for the effective removal of antibiotics in water by strong ionization discharge.


Author(s):  
Zahraa Adil Sadoon ◽  
Mohanad J. M-Ridha

A certain of industrialized wastewater streams include heavy metal ions, should be efficiently removal before the reuse or discharge of treated waters could occur. In this work, the removal of cadmium from aqueous solution was carried out by electro coagulation using aluminum electrodes as anode and cathode. Electro coagulation cell of 1litter was used in this research. Several operating parameters on the removal efficiency of cadmium were investigated, such as initial pH, voltage, initial cadmium  ion concentration, NaCl concentration, spacing between electrodes, and  type of electrode . The Cd(II) concentration (50 ,100,150,200 ppm),( stirring speed 120 rpm) at room temperature . A pH was use   to be a constant best value when studied the  impact  of voltage values were chosen as 6,10,  and 14 increasing voltage  increased Cd(II) removals significantly Removal of 30.1%, 94.1%, 97.4%. The optimum removal efficiency of 97.4 % was achieved at a voltage of 14 V and pH 5 using (Al/Al.) electrodes, within 60 min of operating time. The concentration of NaCl was 0.6 g/l with a 0. 5 cm spacing between the electrodes.


2012 ◽  
Vol 499 ◽  
pp. 419-422
Author(s):  
Yong Chen ◽  
Hui Xu ◽  
Jin Bao Sun ◽  
Chang Long Zhang

In this work attapulgite and chitosan were employed to prepare composites as eco-friendly adsorbent. Study on the removal efficiency of the adsorbent for copper ions in aqueous solution was carried out. External factors such as the amount of attapulgite in the composites, temperature, initial concentration of copper ions, adsorption time and adsorbent dosage how to influence the removal efficiency of composites were investigated. The results showed that at room temperature, 0.37g adsorbent can reach maximum adsorption rate, which the mass ratio of attapulgite and chitosan is 1:1, the initial concentration of copper ions is 50mg / L and absorption time is 2h.


2017 ◽  
Vol 19 (3) ◽  
pp. 389-395 ◽  

Being used in large quantities for some decades, antibiotics have been of little notice since their existence in the environment. Present study aims at investigating the optimization of Ciprofloxacin removal (CIP) in Thermally Activated Persulfate (TAP)/Aeration systems by Central Composite Design (CCD). The effect of operating parameters including initial pH, CIP concentration, Persulfate concentration and temperature on the removal process was investigated in order to find out the optimum conditions. Typically, high temperature, high Persulfate dose, and low initial CIP concentration increased the removal efficiency of CIP. At the tested pH range of 3–11, the highest removal occurred at pH 3.93. Finally, the effects of Mn3O4 Nanoparticles, N2 gas, and COD reduction in optimal condition were studied. Mn3O4 Nanoparticles and N2 gas in optimized conditions increased the removal efficiency from 93.41 to 90.1, respectively. The results showed that Thermally Activated Persulfate oxidation was the efficient process for the treatment of aqueous solution containing Ciprofloxacin due to the production of Sulfate radicals.


2021 ◽  
Vol 945 (1) ◽  
pp. 012057
Author(s):  
Yi Jun Chai ◽  
Yee Sern Ng ◽  
Katrina Pui Yee Shak ◽  
Law Yong Ng

Abstract High iron (Fe2+) concentration in groundwater is a severe issue in many regions of the world. This study attempts to investigate the effectiveness of biosorbents derived from longan peel (LP), pomelo peel (PP) and jackfruit peel (JP) for the adsorption of Fe2+ from aqueous solution in various forms. A batch adsorption study was carried out with an initial Fe2+ concentration of 10 mg/L for 2 h. The results showed that the highest removal efficiency was achieved for PP and its biochar at 97.38% and 99.45%, respectively. High removal efficiency implied that PP contained favourable characteristics for the adsorption of Fe2+. Under the scanning electron microscope (SEM), the surface structure of PP displayed visible dimensions with a relatively large pore size compared with LP and JP. Characterisation study using Fourier-transform infrared spectroscopy (FTIR) reveals that the carboxylate groups and ester carbonyl band participated in the adsorption process. At higher initial pH of 5.83, adsorption of Fe2+ using PP gives higher removal efficiency due to lower competition on electrostatic interaction between positive ions in the solution and the surface of biosorbents. Furthermore, adsorption uptake of 83.0 mg/g was attainable with an initial concentration of 100 mg/L. This study has proven the feasibility of PP as a low cost biosorbents for removing Fe2+ in an aqueous solution.


2016 ◽  
Vol 74 (2) ◽  
pp. 482-490 ◽  
Author(s):  
N. Pueyo ◽  
N. Miguel ◽  
J. L. Ovelleiro ◽  
M. P. Ormad

The purpose of this study is to compare the efficiency of ozonation and the hydrogen peroxide–ozone process for the removal of cyanide from coking wastewater. The most efficient oxidation process is combined with coagulation–flocculation–decantation and lime–soda ash softening pretreatments. The oxidation in aqueous solution and industrial wastewater (at pH 9.5–12.3) by O3 was carried out using a range of concentration of consumed O3 from 10 to 290 mg/L. A molar ratio of H2O2/O3 from 0.1 to 5.2 with different concentrations of O3 constants was used for the H2O2-O3 process. The maximum cyanide removal obtained in coking wastewater was 90% using a mass ratio of O3/CN– of 9.5. Using lower concentrations of O3, cyanide is not removed and can even be generated due to the presence of other cyanide precursor organic micropollutants in the industrial matrix. The concentration of O3 is reduced to half for the same cyanide removal efficiency if the pretreatments are applied to reduce the carbonate and bicarbonate ions. The cyanide removal efficiency in coking wastewater is not improved if the O3 is combined with the H2O2. However, the preliminary cyanide removal treatment in aqueous solution showed an increase in the cyanide removal efficiency for the H2O2-O3 process.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Jie Xing ◽  
Ji-Xian Yang ◽  
Ang Li ◽  
Fang Ma ◽  
Ke-Xin Liu ◽  
...  

Although the treatment technology of sulfamethoxazole has been investigated widely, there are various issues such as the high cost, inefficiency, and secondary pollution which restricted its application. Bioflocculant, as a novel method, is proposed to improve the removal efficiency of PPCPs, which has an advantage over other methods. Bioflocculant MFX, composed by high polymer polysaccharide and protein, is the metabolism product generated and secreted byKlebsiellasp. In this paper, MFX is added to 1 mg/L sulfanilamide aqueous solution substrate, and the removal ratio is evaluated. According to literatures review, for MFX absorption of sulfanilamide, flocculant dosage, coagulant-aid dosage, pH, reaction time, and temperature are considered as influence parameters. The result shows that the optimum condition is 5 mg/L bioflocculant MFX, 0.5 mg/L coagulant aid, initial pH 5, and 1 h reaction time, and the removal efficiency could reach 67.82%. In this condition, MFX could remove 53.27% sulfamethoxazole in domestic wastewater, and the process obeys Freundlich equation.R2value equals 0.9641. It is inferred that hydrophobic partitioning is an important factor in determining the adsorption capacity of MFX for sulfamethoxazole solutes in water; meanwhile, some chemical reaction probably occurs.


Sign in / Sign up

Export Citation Format

Share Document