Effect of Cl- Content, pH Value and CO2 on Electrochemical Corrosion Features of Cr15 Super Martensitic Stainless Steel

2013 ◽  
Vol 738 ◽  
pp. 92-96
Author(s):  
Jin Ming Long ◽  
Quan Bin Liu ◽  
Kun Yu Zhao ◽  
Qi Long Yong ◽  
Jie Su

The corrosion behavior of a Cr15 super martensitic stainless steel (Cr15 SMSS) was investigated in NaCl solutions by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Effects of Cl-content, pH value and saturated CO2on corrosion were sdudied. It was found that the parameters of maintaining passivity current density (ip), the critical pitting potential (Eb) and charge transfer resistance (Rt) of Cr15 SMSS varied widely under different conditions. The corrosion resistance of Cr15 SMSS decrease with increasing Cl-concentration and lowering pH value. BothipandEbincrease for Cr15 SMSS in CO2-saturated NaCl solution, which verified that the CO2in NaCl solution can result in lower pitting sensitivity and higher uniform corrosion rate to Cr15 SMSS.

2020 ◽  
Vol 39 (1) ◽  
pp. 340-350
Author(s):  
Mingjing Wang ◽  
Song Zeng ◽  
Huihui Zhang ◽  
Ming Zhu ◽  
Chengxin Lei ◽  
...  

AbstractCorrosion behaviors of 316 stainless steel (316 ss) and Inconel 625 alloy in molten NaCl–KCl–ZnCl2 at 700°C and 900°C were investigated by immersion tests and electrochemical methods, including potentiodynamic polarization and electrochemical impedance spectroscopy. X-ray diffraction and scanning electron microscopy/energy dispersive spectroscopy were used to analyze the phases and microstructures of the corrosion products. Inconel 625 alloy and 316 ss exhibited high corrosion rates in molten chlorides, and the corrosion rates of these two alloys accelerated when the temperature increased from 700°C to 900°C. The results of the electrochemical tests showed that both alloys exhibited active corrosion in chloride molten salt, and the current density of 316 ss in chloride molten salt at 700°C was 2.756 mA/cm−2, which is about three times the value for Inconel 625 alloy; and the values of the charge transfer resistance (Rt) for Inconel 625 were larger than those for 316 ss. The corrosion of these two alloys is owing to the preferred oxidation of Cr in chloride molten salt, and the corrosion layer was mainly ZnCr2O4 which was loose and porous and showed poor adherence to metal.


CORROSION ◽  
10.5006/3516 ◽  
2020 ◽  
Vol 76 (12) ◽  
Author(s):  
Salar Salahi ◽  
Mostafa Kazemipour ◽  
Ali Nasiri

This study aims to understand the correlation between the manufacturing process-induced plastic deformation, microstructure, and corrosion behavior of a 13Cr martensitic stainless steel tubing material (UNS S42000). Comparisons were made between the microstructure, crystallographic orientation, and corrosion performance of a texture-free, heat-treated sample and uniaxially tensioned samples to the elongations of 5% and 22%. Cyclic potentiodynamic polarization tests and electrochemical impedance spectroscopy were performed on all samples in aerated 3.5 wt% NaCl electrolyte at room temperature. Overall, the corrosion resistance of the samples was found to decrease with increasing deformation level. A more stable and higher corrosion potential and pitting potential values with a better stability of the passive film were derived for the nondeformed sample, whereas the 5% and 22% elongated samples exhibited lower corrosion and pitting potential values and were characterized by having a less stable passive layer. All samples consistently revealed micropit formation on the lath boundaries where a high concentration of chromium carbide precipitates was detected. Increasing the level of plastic strain in 13Cr stainless steel was found to enlarge the size of sensitized regions along the matrix/coarse chromium carbide precipitates interface, leading to more regions susceptible to initiation and propagation of pitting.


2012 ◽  
Vol 706-709 ◽  
pp. 2008-2013
Author(s):  
Satoshi Sunada ◽  
Norio Nunomura ◽  
Kazuhiko Majima

In this experiment two kinds of 410L stainless steel, i.e., the first one is prepared by the I/M process and the second one is prepared by MIM process were used, and their corrosion behavior under stress in deionized water and the aqueous solution of 0.01kmol·m-3HCl+1.72mol·m-3MgCl2 (pH=2.33) has been investigated by Electrochemical Impedance Spectroscopy (hereafter shortened as EIS) under Slow Strain Rate Tensile (hereafter shortened as SSRT) test. The charge transfer resistance (Rct) of the I/M specimen is larger than that of the MIM specimen irrespective of under stress or non-stress, which means that the I/M specimen has the better corrosion resistance than the MIM specimen in the 0.01kmol·m-3HCl+1.72mol·m-3MgCl2 (pH=2.33) solution. It was also confirmed from the fracture surface observation that hydrogen embrittlement occurred on the MIM specimen in the aqueous solution of 0.01kmol·m-3HCl+1.72mol·m-3MgCl2 (pH=2.33). This result would be confirmed to be due to the existing impurities and defects in the MIM specimen.


2013 ◽  
Vol 834-836 ◽  
pp. 370-373
Author(s):  
Shi Dong Zhu ◽  
Jin Ling Li ◽  
Hai Xia Ma ◽  
Li Liu

Pitting resistance of super martensitic stainless steel 00Cr13Ni5Mo2 made in China has been investigated by employing electrochemical technology and chemical immersion methods. The results showed that pitting potential of super martensitic stainless steel decreased with the increasing of NaCl concentration and temperature, respectively. And corrosion rate of super martensitic stainless steel increased with the increasing of temperature. Furthermore, compared to super martensitic stainless steel made in Japan, the domestic one was better in terms of pitting potential, pitting corrosion rate and the density of the pits, but worse in terms of the depth of the pits.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
A. Hossain ◽  
F. Gulshan ◽  
A. S. W. Kurny

The corrosion behaviour of heat treated Al-6Si-0.5Mg-xCu (x=0.5, 1, 2, and 4 wt%) alloys in 0.1 M NaCl solution was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization curves reveal that 2 wt% Cu (Alloy-4) and 4 wt% Cu (Alloy-5) content alloys are more prone to corrosion than the other alloys investigated. But the EIS test results showed that charge transfer resistance (Rct) increases with increasing Cu content into Al-6Si-0.5Mg. Maximum charge transfer resistance (Rct) is reported with the addition of 2 wt% Cu and minimumRctvalue is for 4 wt% Cu content Al-6Si-0.5Mg alloy. Due to additions of Cu into Al-6Si-0.5Mg alloy, the magnitudes of open circuit potential (OCP), corrosion potential (Ecorr), and pitting corrosion potential (Epit) in NaCl solution were shifted to the more noble direction.


2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Imen AbidlI ◽  
◽  
Nébil Souissi ◽  
X. Ramón Novoa ◽  
◽  
...  

The effect of the aqueous extract of Curcuma Longa Rhizome Powder and their main constituents involve phenolic compounds, as an iron corrosion inhibitor in 0.1 M NaCl solution was tested. Electrochemical impedance spectroscopy (EIS) was employed as the main experimental technique to assess the electrochemical behavior of iron in different concentrations of Curcuma extract. EIS revealed an increase of the charge transfer resistance with increasing inhibitor concentration. The temperature and immersion time effects on the corrosion behavior of iron without and with the extract of Curcuma were also studied. The inhibition action of the extract was discussed in view of the Langmuir adsorption isotherm.


2014 ◽  
Vol 61 (6) ◽  
pp. 387-394 ◽  
Author(s):  
J.L. Li ◽  
C.T. Qu ◽  
S.D. Zhu ◽  
L. Liu ◽  
Z.Q. Gao

Purpose – The purpose of this study was to investigate the pitting resistance and assess the critical pitting temperature (CPT) of a super martensitic stainless steel, 00Cr13Ni5Mo2, made in China, considering especially the difference in the pitting corrosion resistance between the domestic super martensitic stainless steel and an imported one. Design/methodology/approach – Potentiodynamic sweep tests were applied to investigate the effects of four NaCl concentrations (weight per cent) of 1, 3.5, 9 and 17, and four testing temperatures of 30, 50, 75 and 90°C on the pitting resistance of the domestic super martensitic stainless steel in the presence of CO2. Potentiostatic sweep tests were utilized to determine the CPT. Furthermore, chemical immersion exposures, implemented according to the appropriate standard were used to evaluate the difference in the pitting corrosion resistance between the domestic super martensitic stainless steel and an imported one. In addition, the morphology of pits was analyzed using a scanning electron microscope. Finding – The pitting potential of the domestic super martensitic stainless steel decreased with an increase in NaCl concentration and temperature in the presence of CO2. The CPT of the domestic super martensitic stainless steel measured by potentiostatic polarization was 41.16°C. Two types of typical corrosion pits, closed pits formed at 35°C and open pits formed at 50°C, were observed. Furthermore, compared to the super martensitic stainless steel made in Japan, the domestic one was better in terms of pitting potential, corrosion rate and the density of the pits, but worse in terms of the depth of the pits, which may result in a risk of corrosion perforation of tubing and casings. Originality/value – The paper highlights that chloride ions, temperature and the presence of CO2 play an important role on the pitting resistance of super martensitic stainless steel.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2614 ◽  
Author(s):  
Xiuqing Fu ◽  
Wenke Ma ◽  
Shuanglu Duan ◽  
Qingqing Wang ◽  
Jinran Lin

In order to study the effect of nano-CeO2 particles doping on the electrochemical corrosion behavior of pure Ni-Fe-Co-P alloy coating, Ni-Fe-Co-P-CeO2 composite coating is prepared on the surface of 45 steel by scanning electrodeposition. The morphology, composition, and phase structure of the composite coating are analyzed by means of scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The corrosion behavior of the coatings with different concentrations of nano-CeO2 particles in 50 g/L NaCl solution is studied by Tafel polarization curve and electrochemical impedance spectroscopy. The corrosion mechanism is discussed. The experimental results show that the obtained Ni-Fe-Co-P-CeO2 composite coating is amorphous, and the addition of nano-CeO2 particles increases the mass fraction of P. With the increase of the concentration of nano-CeO2 particles in the plating solution, the surface flatness of the coating increases. The surface of Ni-Fe-Co-P-1 g/L CeO2 composite coating is uniform and dense, and its self-corrosion potential is the most positive; the corrosion current and corrosion rate are the smallest, and the charge transfer resistance is the largest, showing the best corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document