Dielectric Properties of Na2O Doped Cao-B2O3-SiO2 System Glass-Ceramics

2013 ◽  
Vol 750-752 ◽  
pp. 492-496
Author(s):  
Peng Fei Wei

The behavior of dielectric and microwave properties against sintering temperature was been carried out on CaO-B2O3-SiO2glass-ceramics with Na2O addition by XRD and SEM. The results show that 0.5 wt.% Na2O addition is advantageous to improve the dielectric and microwave properties due to increasing the major crystalline CaSiO3. With further increasing Na2O content, α-SiO2is the predominant crystalline phase instead of CaSiO3. The CBS glass-ceramics with 0.5 wt.% Na2O sintered at 875°C has a bulk density of 2.51g·cm-3, and which possesses good dielectric properties:εr=6.2,tanδ=1.9×10-3(10 MHz) and low dielectric constant below 2×10-3over a wide frequency range. The proposed dielectrics can find applications in microwave devices, which require low dielectric loss and low dielectric constant.

2015 ◽  
Vol 1107 ◽  
pp. 38-44
Author(s):  
Wong Yick Jeng ◽  
Hassan Jumiah ◽  
Mansor Hashim

The CaTiO3samples were prepared by high-energy ball milling process followed by sintering process from 1040 to 1200°C. X-ray diffraction (XRD), microstructural analysis, and dielectric properties over a wide range of frequency varying from 0.01 Hz to 1 GHz at room temperature were investigated. The formation of a single phase CaTiO3with orthorhombic structure was achieved at 1120°C and above. From a morphological point of view, sintering temperature promoted grain growth. Dielectric properties in the frequency range 0.01 Hz - 1 MHz revealed a relaxation-type process. Interfacial phenomena were the possible physical mechanisms that gave rise to these relaxation-type plots. Extending the frequencies above ~1 MHz yielded a frequency-independent characteristic of dielectric constant (ε'). These turned out to the relatively small dielectric loss (tan δ) values. The origin of the dielectric responses in the frequency range 1 MHz - 1 GHz was attributed to the domination of dipolar polarization. The grain size effect in sintered CaTiO3samples was prominent, notably in dielectric responses above ~1 MHz. Increase in sintering temperature remarkably led to an enhancement in dielectric constant values and reduction in dielectric loss values. Therefore, a significant correlation existed between microstructural features and dielectric properties.


2007 ◽  
Vol 280-283 ◽  
pp. 131-134
Author(s):  
Shao Hong Wang ◽  
He Ping Zhou ◽  
Ke Xin Chen ◽  
Xiao Shan Ning

Preparation technology and sintering characteristics of the CaO-Al2O3-B2O3-SiO2 system glass ceramics were investigated. Results showed that the glass ceramics of this system could be sintered at 850oC; the material has fine sintering properties, outstanding dielectric properties including low dielectric constant (about 4.85, 1GHz) and low dielectric loss (about 0.1%, 1GHz). XRD analysis indicated that the crystalline phases in the sintered body are mainly Al5(BO3)O6, a trace amount of SiO2 and CaSiO3.


2016 ◽  
Vol 840 ◽  
pp. 61-65 ◽  
Author(s):  
Nurul Nadia Mohd Salim ◽  
Julie Juliewatty Mohamed ◽  
Zainal Arifin Ahmad

Sr - doped NiO ceramic was prepared using solid state method. The calcination temperature used at 950 oC for 4 hours and the sintering temperatures was varied from 1100 to 1300 oC for 3 hours. The results depict the microstructures increasing in grains size (1-8 μm) by increase of sintering temperatures. The density and porosity testing support the result of microstructures analysis. The larger grains size induced the increase in density and lower in porosity. The dielectric properties is observed in a wide frequency range of (1 - 1 000 MHz). The increase of dielectric constant is associated with the decrease of dielectric loss. The optimum sintering temperature was obtained at 1200 oC depict the grain size range (1 - 2 μm) with highest dielectric constant (1.61 x 103) and lowest dielectric loss (1.15) at 1MHz.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000476-000482 ◽  
Author(s):  
Masao Tomikawa ◽  
Hitoshi Araki ◽  
Yohei Kiuchi ◽  
Akira Shimada

Abstract Progress of 5G telecommunication and mm radar for autopilot, high frequency operation is required. Insulator materials having low loss at high frequency is desired for the applications. We designed the low dielectric constant, and low dielectric loss materials examined molecular structure of the polyimide and found that permittivity 2.6 at 20GHz, dielectric loss 0.002. Furthermore, in consideration of mechanical properties such as the toughness and adhesion to copper from a point of practical use. Dielectric properties largely turned worse when giving photosensitivity. To overcome the poor dielectric properties, we designed the photosensitive system. After all, we successfully obtained 3.5 of dielectric constant and 0.004 of dielectric loss, and 100% of elongation at break. In addition, we offered a B stage sheet as well as varnish. These materials are applicable to re-distribution layer of FO-WLP, Interposer and other RF applications for microelectronics.


2008 ◽  
Vol 368-372 ◽  
pp. 412-413 ◽  
Author(s):  
Jie Zhang ◽  
Deng Xue Wu ◽  
Xiang Hui Chang ◽  
Tie Cheng Lu ◽  
Yi Hang Jiang ◽  
...  

Dielectric constant and dielectric dissipation of MgAl2O4 transparent nano-ceramics were measured at different frequencies. The results indicated that the transparent nano-ceramic has a very low dielectric constant and low dielectric dissipation in frequency range of 1K~9MHz, but the dissipation of is independent of frequency. The dielectric constant of the transparent nano-ceramic does not vary signifycantly with temperature.


2007 ◽  
Vol 280-283 ◽  
pp. 85-88
Author(s):  
Lin Hu ◽  
He Ping Zhou ◽  
Hao Xue ◽  
Chun Lai Xu

Barium strontium titanium oxide (BSTO) has great advantages and potentiality for the application of microwave technology. In order to be used in phased array antennas, high dielectric tunability, relatively low dielectric constant and low dielectric loss are required. In this paper, MgO was mixed into BSTO and the microstructure and dielectric properties of MgO-mixed BSTO bulk ceramics were investigated. The mole ratio of Ba and Sr was rather fixed to 5:5 in this study. It is observed that a small amount of MgO (5 wt%) has gone beyond the solubility limits of Mg in BSTO. The dielectric constant and dielectric loss of BSTO ceramics decreased with the increase of the content of MgO mixed. However, the tunability of MgO-mixed BSTO ceramics decreased at the same time. 20wt% MgO-mixed BSTO ceramics exhibits preferable dielectric properties with acceptable tunability.


2016 ◽  
Vol 18 (28) ◽  
pp. 19183-19193 ◽  
Author(s):  
Cuijiao Zhao ◽  
Xiaonan Wei ◽  
Yawen Huang ◽  
Jiajun Ma ◽  
Ke Cao ◽  
...  

Although general porous materials have a low dielectric constant, their uncontrollable opened porous structure results in high dielectric loss and poor barrier properties, thus limiting their application as interconnect dielectrics.


1992 ◽  
Vol 264 ◽  
Author(s):  
N. Ushifusa ◽  
K. Sakamoto ◽  
S. Ogihara ◽  
T. Fujita

AbstractMullite (3Al2O3·2SiO2) has a low thermal expansion coefficient and a low dielectric constant making it a favorable material for substrate applications. Sintering of pure mullite ceramics is difficult, however, even above 1700°C. Thus, mullite-glass ceramics containing glass additives (Al2O3-MgO-SiO2 glass) which could be sintered at about 1600°;C were fabricated and their properties were investigated. The ternary system diagram of Al2O3-MgO-SiO2 shows that high SiO2 content glass depos its cristobalite at 200 to 270°C, which causes a substantial volume change, resulting in ceramic substrate cracking. Therefore it is particularly important to prevent crystallization of cristobalite from the glass phase in mullite-glass ceramics. The glass phase softens or partially fuses above 1600°C, and cristobalite formation in the glass phase occurs in the cooling process during firing. In order to obtain good substrates of mullite-glass ceramics, a higher temperature for sintering and faster cooling rate after firing are preferable. Analytical results by X-ray, SEM and EPMA show that mullite dissolves in the glass phase at a higher sintering temperature and more mullite crystallizes in the cooling process with a lower rate. The content of Al2O3 in the glass phase, therefore, increases with the increased sintering temperature and cooling rate, which may restrain crystallization of cristobalite. By adjusting of the composition of mullite and glass phase, mullite-glass ceramics with low dielectric constant (5.9), thermal expansion coefficient (3.5×10−6/°C) close to that of silicon chips, and high bending strength (210MPa) have been developed. These substrates made of mullite-glass ceramics are suitable for mounting silicon devices of computer processors.


2020 ◽  
Vol 11 (38) ◽  
pp. 6163-6170
Author(s):  
Fengping Liu ◽  
Xingrong Chen ◽  
Linxuan Fang ◽  
Jing Sun ◽  
Qiang Fang

Two new CF3-containing polysiloxanes with low dielectric constant (Dk) and dielectric loss (Df ) at a high frequency of 5 GHz were reported. The sample with two −CF3 groups exhibits better dielectric properties with Dk of 2.53 and ultralow Df of 1.66 × 10−3.


2014 ◽  
Vol 602-603 ◽  
pp. 748-751 ◽  
Author(s):  
Xin Hui Zhao ◽  
Min Jia Wang ◽  
Qi Long Zhang ◽  
Hui Yang

(Ca0.9Mg0.1)SiO3ceramics possess a low dielectric constant and a highQfvalue, however, the densification temperature of (Ca0.9Mg0.1)SiO3ceramics is higher than 1280°C. In this paper, the effect of Li2CO3addition on sinterability and dielectric properties of (Ca0.9Mg0.1)SiO3ceramics were studied. The phase presence and surface morphology were determined by XRD and SEM techniques, respectively. CaSiO3and Ca2MgSi2O7phases were observed. With the addition of >2.0 wt% Li2CO3, the sintering temperature of (Ca0.9Mg0.1)SiO3ceramic was significantly lowered, reaching to 1070°C. (Ca0.9Mg0.1)SiO3ceramics with 4wt% Li2CO3sintered at 1070°C for 3 h shows excellent dielectric properties:εr=5.91,Qf= 15300GHz (at 10GHz).


Sign in / Sign up

Export Citation Format

Share Document