The Research of Digital Sandbox System

2013 ◽  
Vol 756-759 ◽  
pp. 1798-1802
Author(s):  
Hui Bai Wang ◽  
Jian Feng Hou

Digital sandbox is mainly the use of advanced computer technology, adding vivid images multimedia presentations and interactive features, such as 3D-3 dimensional animation and 3D model, combined with state-of-the-art optical imaging technology, on the basis of the existing traditional sandbox, to entertain visitors with dynamic visual effects, beautiful and multi-faceted show. The system for digital sandbox, the study of the generation and synthesis of the of holographic imaging surface image, with MAYA combined, quickly generate the image in all directions, and synthesis, resulting in a realistic three-dimensional scene; interactive virtual scene with speakers, through data gloves to control scene, to reach a wonderful stereoscopic display effect.

2013 ◽  
Vol 475-476 ◽  
pp. 1517-1521
Author(s):  
Qing Gang Yang ◽  
Meng Zhang ◽  
Chang Xiao

The three-dimensional computer technology currently has in various engineering fields have a wide range of applications, all the three-dimensional visual effects technology can bring us visual impact, the use of three-dimensional computer technology produced by the television advertising more easily accepted by the audience, this thesis in the three-dimensional computer-aided design advertising design application technology.


2016 ◽  
Vol 11 (1) ◽  
pp. 155892501601100
Author(s):  
Lanming Jin ◽  
Gaoming Jiang ◽  
Honglian Cong ◽  
Chenguang Hou

Jacquard quilted structure weft-knitted fabrics have many advantages, such as strong stereoscopic patterns, soft handling, adjustable apparel thickness, and use as home textiles. However, the final visual effects of such fabrics are difficult to predict prior to processing because of the rough surface caused by the connecting yarn and the inlay yarn of the fabric. This research applied a three-dimensional (3D) model instead of the original single-loop model to simulate knitted fabric. The 3D model is more suitable for a multilayer fabric because the simulation is quick, real, and convenient. The article includes experiments on structural parameters concerning regular dents of different samples, analysis of parameter data about the surface, and the simulation process with the objective of understanding the computer simulation of fabric. Results show good correlation between the simulation results and the actual fabric. Importantly, we can clearly see the expected effects in the fabrics without going through production and processing. This research will be useful for establishing a quick computer-generated simulation system for multilayer fabrics.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qiwei Zhang ◽  
Hongbin Fang ◽  
Jian Xu

Earthworm-like robots have received great attention due to their prominent locomotion abilities in various environments. In this research, by exploiting the extraordinary three-dimensional (3D) deformability of the Yoshimura-origami structure, the state of the art of earthworm-like robots is significantly advanced by enhancing the locomotion capability from 2D to 3D. Specifically, by introducing into the virtual creases, kinematics of the non-rigid-foldable Yoshimura-ori structure is systematically analyzed. In addition to exhibiting large axial deformation, the Yoshimura-ori structure could also bend toward different directions, which, therefore, significantly expands the reachable workspace and makes it possible for the robot to perform turning and rising motions. Based on prototypes made of PETE film, mechanical properties of the Yoshimura-ori structure are also evaluated experimentally, which provides useful guidelines for robot design. With the Yoshimura-ori structure as the skeleton of the robot, a hybrid actuation mechanism consisting of SMA springs, pneumatic balloons, and electromagnets is then proposed and embedded into the robot: the SMA springs are used to bend the origami segments for turning and rising motion, the pneumatic balloons are employed for extending and contracting the origami segments, and the electromagnets serve as anchoring devices. Learning from the earthworm’s locomotion mechanism--retrograde peristalsis wave, locomotion gaits are designed for controlling the robot. Experimental tests indicate that the robot could achieve effective rectilinear, turning, and rising locomotion, thus demonstrating the unique 3D locomotion capability.


2020 ◽  
Vol 9 (2) ◽  
pp. 78-82
Author(s):  
Аndrey I. Yaremenko ◽  
Anna V. Lysenko ◽  
Elizaveta A. Ivanova ◽  
Oleg V. Galibin

Facial defects and deformations occupy a significant place in the practice of maxillofacial and dental surgeons. Nevertheless, maxillofacial surgery is developing rapidly and requires improvement of existing treatment methods, and introduction of new approaches to reconstructive surgery. Augmented reality is a promising direction of computer technology development which is actively used in medicine and education. Modern computer technology allows to create a 3D model of a lost organ and use it for preoperative planning, as well as apply a virtual model for intraoperative navigation. Recently, the method of augmented reality has been actively developed, when a virtual image of the zone of the surgical area or a dedicated organ is used, which is compared with its real prototype in static mode, or in real-time using computer devices. The benefits of using augmented reality technologies in reconstructive surgery is associated with preoperative virtual planning, simplification of the surgical intervention itself, as well as with a reduction in the risks of intra- and postoperative complications. The aim of our work was to study the opportunity of using the augmented reality technology in reconstructive surgery for microtia correction based on pre-operative computer simulation. At the preoperative stage, a photometric analysis of the patient was carried out, then a computer simulation of the missing auricle was performed. Using a 3D printer, a virtual model of the reconstructed auricle was obtained. The image in three-dimensional format was loaded into augmented reality glasses, which made it possible to project the shape and position of the simulated auricle to the area of the defect of the auricle when preparing for surgery. During the surgery, a marker was installed near the surgical field, in order to display the three-dimensional model in a destined position. During surgical intervention, an autogenous costal cartilage was taken, from which the auricle was formed using augmented reality approach and three-dimensional modeling. Subsequently, the graft was introduced to the formed bed in the area of the right ear auricle. The obtained 3D model of the auricle before the operation enabled planning of the forthcoming operation and determine the amount of autograft needed for reconstruction. Using the augmented reality glasses, the exact shape of the auricle is reproduced during the operation, and its proper position is assessed in relation to the healthy side. No complications were observed over the postoperative period. Virtual modelling of a lost or absent organ based on a preoperative examination provides important information about its spatial structure. Preoperative virtual planning allows you to predict the individual features of the operation, its difficult stages, to anticipate possible complications. The use of augmented reality technology during reconstructive surgery is a promising method requiring further development and improvement.


2020 ◽  
Author(s):  
JIN WANG ◽  
wei Qian ◽  
guoke Chen

Abstract Pottery is an important entity in archaeological studies, and the accurate classification of pottery shapes largely depends on the experience and knowledge of archaeologists. In this thesis, the pottery taken from the Gansu-Zhanqi site is used as the sample. A 3D model of the pottery was obtained by three-dimensional scanning, and the study of computer-assisted pottery typology was based on quantitative analysis and elliptic Fourier analysis. This method may enhance and supplement the traditional methods of classifying pottery in archaeology, thereby enriching the parameters and breadth of pottery analysis. This method represents a new means of exploring and experimenting with objective classification and provides a new tool for traditional archaeological analysis methods.


Author(s):  
Robert Glaeser ◽  
Thomas Bauer ◽  
David Grano

In transmission electron microscopy, the 3-dimensional structure of an object is usually obtained in one of two ways. For objects which can be included in one specimen, as for example with elements included in freeze- dried whole mounts and examined with a high voltage microscope, stereo pairs can be obtained which exhibit the 3-D structure of the element. For objects which can not be included in one specimen, the 3-D shape is obtained by reconstruction from serial sections. However, without stereo imagery, only detail which remains constant within the thickness of the section can be used in the reconstruction; consequently, the choice is between a low resolution reconstruction using a few thick sections and a better resolution reconstruction using many thin sections, generally a tedious chore. This paper describes an approach to 3-D reconstruction which uses stereo images of serial thick sections to reconstruct an object including detail which changes within the depth of an individual thick section.


Author(s):  
Neil Rowlands ◽  
Jeff Price ◽  
Michael Kersker ◽  
Seichi Suzuki ◽  
Steve Young ◽  
...  

Three-dimensional (3D) microstructure visualization on the electron microscope requires that the sample be tilted to different positions to collect a series of projections. This tilting should be performed rapidly for on-line stereo viewing and precisely for off-line tomographic reconstruction. Usually a projection series is collected using mechanical stage tilt alone. The stereo pairs must be viewed off-line and the 60 to 120 tomographic projections must be aligned with fiduciary markers or digital correlation methods. The delay in viewing stereo pairs and the alignment problems in tomographic reconstruction could be eliminated or improved by tilting the beam if such tilt could be accomplished without image translation.A microscope capable of beam tilt with simultaneous image shift to eliminate tilt-induced translation has been investigated for 3D imaging of thick (1 μm) biologic specimens. By tilting the beam above and through the specimen and bringing it back below the specimen, a brightfield image with a projection angle corresponding to the beam tilt angle can be recorded (Fig. 1a).


2007 ◽  
Vol 30 (4) ◽  
pp. 77
Author(s):  
Derek Cool ◽  
Shi Sherebrin ◽  
Jonathan Izawa ◽  
Joseph Chin ◽  
Aaron Fenster

Introduction: Transrectal ultrasound (TRUS) prostate biopsy (Bx) is currently confined to 2D information to both target and record 3D Bx locations. Accurate placement of Bx needles cannot be verified without 3D information, and recording Bx sites in 2D does not provide sufficient information to accurately guide the high incidence of repeat Bx. We have designed a 3D TRUS prostate Bx system that augments the current 2D TRUS system and provides tools for biopsy-planning, needle guidance, and recording of the biopsy core locations entirely in 3D. Methods: Our Bx system displays a 3D model of the patient’s prostate, which is generated intra-procedure from a collection of 2D TRUS images, representative of the particular prostate shape. Bx targets are selected, needle guidance is facilitated, and 3D Bx sites are recorded within the 3D context of the prostate model. The complete 3D Bx system was validated, in vitro, by performing standard ten-core Bx on anatomical phantoms of two patient’s prostates. The accuracy of the needle-guidance, Bx location recording, and 3D model volume and surface topology were validated against a CT gold standard. Results: The Bx system successfully reconstructed the 3D patient prostate models with a mean volume error of 3.2 ± 7.6%. Using the 3D system, needles were accurately guided to the pre-determined targets with a mean error of 2.26 ± 1.03 mm and the 3D locations of the Bx cores were accurately recorded with a mean distance error of 1.47 ± 0.79 mm. Conclusion: We have successfully developed a 3D TRUS prostate biopsy system and validated the system in vitro. A pilot study has been initiated to apply the system clinically.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3887
Author(s):  
Watcharapong Pudkon ◽  
Chavee Laomeephol ◽  
Siriporn Damrongsakkul ◽  
Sorada Kanokpanont ◽  
Juthamas Ratanavaraporn

Three-dimensional (3D) printing is regarded as a critical technology in material engineering for biomedical applications. From a previous report, silk fibroin (SF) has been used as a biomaterial for tissue engineering due to its biocompatibility, biodegradability, non-toxicity and robust mechanical properties which provide a potential as material for 3D-printing. In this study, SF-based hydrogels with different formulations and SF concentrations (1–3%wt) were prepared by natural gelation (SF/self-gelled), sodium tetradecyl sulfate-induced (SF/STS) and dimyristoyl glycerophosphorylglycerol-induced (SF/DMPG). From the results, 2%wt SF-based (2SF) hydrogels showed suitable properties for extrusion, such as storage modulus, shear-thinning behavior and degree of structure recovery. The 4-layer box structure of all 2SF-based hydrogel formulations could be printed without structural collapse. In addition, the mechanical stability of printed structures after three-step post-treatment was investigated. The printed structure of 2SF/STS and 2SF/DMPG hydrogels exhibited high stability with high degree of structure recovery as 70.4% and 53.7%, respectively, compared to 2SF/self-gelled construct as 38.9%. The 2SF/STS and 2SF/DMPG hydrogels showed a great potential to use as material for 3D-printing due to its rheological properties, printability and structure stability.


2021 ◽  
Vol 29 ◽  
pp. 133-140
Author(s):  
Bin Liu ◽  
Shujun Liu ◽  
Guanning Shang ◽  
Yanjie Chen ◽  
Qifeng Wang ◽  
...  

BACKGROUND: There is a great demand for the extraction of organ models from three-dimensional (3D) medical images in clinical medicine diagnosis and treatment. OBJECTIVE: We aimed to aid doctors in seeing the real shape of human organs more clearly and vividly. METHODS: The method uses the minimum eigenvectors of Laplacian matrix to automatically calculate a group of basic matting components that can properly define the volume image. These matting components can then be used to build foreground images with the help of a few user marks. RESULTS: We propose a direct 3D model segmentation method for volume images. This is a process of extracting foreground objects from volume images and estimating the opacity of the voxels covered by the objects. CONCLUSIONS: The results of segmentation experiments on different parts of human body prove the applicability of this method.


Sign in / Sign up

Export Citation Format

Share Document