Increasing the Melting Ability of Glass Batch by Batch Modification

2013 ◽  
Vol 770 ◽  
pp. 128-131 ◽  
Author(s):  
Ekarat Meechoowas ◽  
Konnika Tui-Ai ◽  
Kanit Tapasa ◽  
Usuma Naknikham ◽  
Tepiwan Jitwatcharakomol

The soda-lime glass with the composition of 74SiO2-18Na2O-6CaO-B2O3-Al2O3 thermodynamically requires the exploited heat of 557 kW/ ton of glass to transform raw materials into glass. The objective of this project is to modify the soda-lime glass batch by using wollastonite instead of limestone and pyrophyllite instead of aluminium hydroxide. The exploited heat of the batch with wollastonite is reduced to 546 kW/ton of glass while the batch with wollastonite and pyrophyllite is decreased to 550 kW/ton of glass. According to Batch-Free Time testing, it is found that the melting ability of both modified batches is higher than of the original batch, while the properties of glass are slightly changed. This implies that the modified batch requires a lower melting energy than the original batch.

2016 ◽  
Vol 690 ◽  
pp. 272-275
Author(s):  
Kanit Tapasa ◽  
Ekarat Meechoowas ◽  
Suwannee Thepbutdee ◽  
Amorntep Montreeuppathumb

In the conventional soda-lime glass production, loose raw materials are normally mixed into a glass batch for melting. Dusting and segregation of the loose glass batch are always occurred during the melting process inside the glass furnace. Also, the loose glass batch has low thermal conductivity which limits the glass melting ability and pulling rate of the glass furnace. Granulation and preheating of glass raw materials have been proposed to solve the problems. In this study, the granulated soda-lime glass batch (SiO2 50% Na2CO3 22.5% CaCO3 12% NaAlSi3O8 9.5% BaCO3 2.5% ZnO 1.75% Sb2O3 1% and K2CO3 0.75% by weight) was prepared to study the melting ability in an electric furnace. The granulated batch was also preheated at 500-600°C before melting. The preheating temperature was matched to the temperature of flue gas at the bottom of the stack in the glass furnace. The purpose behind this was aiming to recover the waste heat from the furnace. The experiment exhibited the increased melting ability for the granulated-preheated glass batch


2013 ◽  
Vol 545 ◽  
pp. 24-30 ◽  
Author(s):  
Ekarat Meechoowas ◽  
Kanit Tapasa ◽  
Tepiwan Jitwatcharakomol

Soda-lime glass is produced by melting sand (SiO2), soda ash (Na2CO3), lime stone (CaCO3) together with effective additives such as dolomite (CaMg(CO3)2) and an important structural modification, alumina (Al2O3) in which the melting temperature is very high around 1500°C. With this reason, to dissolve alumina, high amount of energy is needed. Consequently, one of possibilities to reduce the melting energy is replacing alumina by the raw material with a lower enthalpy of melting. The heat required for melting the batch of raw materials from atmosphere temperature to melting temperature is called exploited heat (Hex), which can be calculated from chemical enthalpy (H°chem) and heat content (Hmelt) at reference temperature (Tex). From thermodynamic approach, chemical enthalpy of alumina is higher than feldspar (KAlSiO3) or pyrophyllite (Al2Si4O10(OH)2). For the glass batch with alumina, the calculated exploited heat is 540 kWh/ton while the batch with feldspar or pyrophyllite is lower, namely 534 and 484 kWh/ton, respectively. This means that the melting process can be emerged easier than the batch with alumina because the melting point of feldspar is around 1200°C and pyrophyllite dehydroxylates around 900°C. The kinetic properties of batch melting were investigated by Batch-Free Time method, which defines the melting ability of the modified batch. According to thermodynamic calculation, it was found that both alternative batches were melted easier. The study showed that feldspar or pyrophyllite could be used instead of alumina without significant changes in glass chemical composition and physical properties. The concern of using feldspar or pyrophyllite is the quantity of minor impurities which affect to the color appearance especially in clear glass products.


2014 ◽  
Vol 608 ◽  
pp. 311-315 ◽  
Author(s):  
Kanit Tapasa ◽  
Ekarat Meechoowas ◽  
Usuma Naknikham ◽  
Tepiwan Jitwatcharakomol

Batch modification with low-enthalpy raw materials is the effective approach for reducing the glass melting energy. In the previous study, it was found that introducing wollastonite (CaSiO3) as a source of CaO instead of calcium carbonate (CaCO3) in the soda-lime glass batch can fasten the melting process. It is because the modified batch with CaSiO3 has lower chemical heat demand, ΔHochem, which is equivalent to the standard heat of batch-to-melt conversion. In order to investigate the kinetic property of the modified batch, the melting behaviour of 2 kg modified batch was studied. The results showed that the temperature of the modified batch increased at a faster rate than the original batch. The properties of the glass from the modified are also similar to the original batch.


2019 ◽  
Vol 798 ◽  
pp. 206-211
Author(s):  
Ekarat Meechoowas ◽  
Parida Jampeerung ◽  
Kanit Tapasa ◽  
Usanee Pantulap ◽  
Tepiwan Jitwatcharakomol

The soda bloom - white stain on the glass surface – is an issue concerned in the glass manufacturing. It is because of high humidity and warm weather especially in the tropical region. The aim of this study was to modify glass batch to increase the weathering resistance for soda-lime glass. The weathering resistance of glass was measured by using the sodium (Na) leach technique according to the ISO 719. In principle, the strength of glass structure decreases with increasing Na content. The reactions start when free Na+ions moving to the glass surface and react with moisture from the surroundings. From this reason, the soda bloom occurs during storage lifetime. Two samples of glasses as described in Table 1 were modified with dolomite (CaMg (CO3)2) or alumina (Al2O3) to reduce the sodium free ion on the glass surface and increase the strength of glass structure Table 1: The glasses compositions All glasses were melted at 1500oC for 3 hours and annealed at 570°C. In glass structure, magnesium (Mg) and aluminium (Al) are network modifiers that can improve the structural strength and the weathering resistance of glass. The weathering resistance is in the inverse relationship with the weight of Na2O in mg per 50 ml of water according to theISO 719. The results showed that the weathering resistance increased with increasing dolomite or alumina contents. The experiments of increasing dolomite from 0 to 18 wt.% in a replacement of calcite showed the result that indicated the weight of Na2O in mg per 50 ml of water decreased from 0.53 to 0.41 mg, and the glass with increasing alumina from 0 to 1 wt.% showed that the weight of Na2O in mg per 50 ml of water decreased from 0.80 to 0.39 mg. According to the weathering chamber test under the cyclic atmospheric conditions of 60% and 80% relative humidity, and the cyclic temperatures of 20°C and 32 °C for 14 days, the glasses with more than 12 wt.% dolomite or more than 1 wt.% alumina did not generate the white stains on the surface. This process can be applied in the glass production. The satisfied result was found in the glass sample with 12 wt.% dolomite and 1 wt.% alumina. The weight of Na2O per 50 ml H2O reduced to 0.43 and 0.41mg, respectively, and the storage time increased from 3 months to 6 months without soda bloom.


2016 ◽  
Vol 23 (01) ◽  
pp. 1550081 ◽  
Author(s):  
KEGAO LIU ◽  
NIANJING JI ◽  
YONG XU ◽  
HONG LIU

Chalcogenide films can be used in thin-film solar cells due to their high photoelectric conversion efficiencies. It was difficult to identify one abnormal phase with high X-ray diffraction (XRD) intensity and preferred orientation in the samples for preparing chalcogenide films by spin-coating and co-reduction on soda-lime glass ([Formula: see text]) substrates. The raw materials and reductant are metal chlorides and hydrazine hydrate respectively. In order to identify this phase, a series of experiments were done under different conditions. The phases of obtained products were analyzed by XRD and the size and morphology were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). From the experimental results, first it was proved that the abnormal phase was water-soluble by water immersion experiment, then it was identified as NaCl crystal through XRD, energy dispersive spectrometer (EDS) and SEM. The cubic NaCl crystals have high crystallinity with size lengths of about 0.5–2[Formula: see text][Formula: see text]m and show a [Formula: see text]100[Formula: see text] preferred orientation. The reaction mechanism of NaCl crystal was proposed as follows: The NaCl crystal was formed by reaction of Na2O and HCl in a certain experimental conditions.


Author(s):  
Branimir Bajac ◽  
Jovana Stanojev ◽  
Slobodan Birgermajer ◽  
Milena Radojevic ◽  
Jovan Matovic

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 129
Author(s):  
Marcos Soldera ◽  
Sabri Alamri ◽  
Paul Alexander Sürmann ◽  
Tim Kunze ◽  
Andrés Fabián Lasagni

All-purpose glasses are common in many established and emerging industries, such as microelectronics, photovoltaics, optical components, and biomedical devices due to their outstanding combination of mechanical, optical, thermal, and chemical properties. Surface functionalization through nano/micropatterning can further enhance glasses’ surface properties, expanding their applicability into new fields. Although laser structuring methods have been successfully employed on many absorbing materials, the processability of transparent materials with visible laser radiation has not been intensively studied, especially for producing structures smaller than 10 µm. Here, interference-based optical setups are used to directly pattern soda lime substrates through non-lineal absorption with ps-pulsed laser radiation in the visible spectrum. Line- and dot-like patterns are fabricated with spatial periods between 2.3 and 9.0 µm and aspect ratios up to 0.29. Furthermore, laser-induced periodic surface structures (LIPSS) with a feature size of approximately 300 nm are visible within these microstructures. The textured surfaces show significantly modified properties. Namely, the treated surfaces have an increased hydrophilic behavior, even reaching a super-hydrophilic state for some cases. In addition, the micropatterns act as relief diffraction gratings, which split incident light into diffraction modes. The process parameters were optimized to produce high-quality textures with super-hydrophilic properties and diffraction efficiencies above 30%.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 488
Author(s):  
Oumaima Nasry ◽  
Abderrahim Samaouali ◽  
Sara Belarouf ◽  
Abdelkrim Moufakkir ◽  
Hanane Sghiouri El Idrissi ◽  
...  

This study aims to provide a thermophysical characterization of a new economical and green mortar. This material is characterized by partially replacing the cement with recycled soda lime glass. The cement was partially substituted (10, 20, 30, 40, 50 and 60% in weight) by glass powder with a water/cement ratio of 0.4. The glass powder and four of the seven samples were analyzed using a scanning electron microscope (SEM). The thermophysical properties, such as thermal conductivity and volumetric specific heat, were experimentally measured in both dry and wet (water saturated) states. These properties were determined as a function of the glass powder percentage by using a CT-Meter at different temperatures (20 °C, 30 °C, 40 °C and 50 °C) in a temperature-controlled box. The results show that the thermophysical parameters decreased linearly when 60% glass powder was added to cement mortar: 37% for thermal conductivity, 18% for volumetric specific heat and 22% for thermal diffusivity. The density of the mortar also decreased by about 11% in dry state and 5% in wet state. The use of waste glass powder as a cement replacement affects the thermophysical properties of cement mortar due to its porosity as compared with the control mortar. The results indicate that thermal conductivity and volumetric specific heat increases with temperature increase and/or the substitution rate decrease. Therefore, the addition of waste glass powder can significantly affect the thermophysical properties of ordinary cement mortar.


2020 ◽  
Author(s):  
Iskender Akkurt ◽  
Kadir Gunoglu ◽  
Recep Kurtuluş ◽  
Taner Kavas

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Alberto Sánchez ◽  
José Tuñón ◽  
Manuel Montejo ◽  
Pilar Amate ◽  
Bautista Ceprián ◽  
...  

AbstractThis paper discusses results obtained from in situ analysis of the tesserae of the Roman mosaic of Los Amores (Cástulo site, Linares, Spain) dating back to the turn of the 1st to the 2nd century AD. Specifically, it focuses on the scene The Judgment of Paris. In view of the exceptional state of preservation of the mosaic, from which very few tesserae had fallen off, non-invasive methods with portable Micro Raman Spectroscopy (MRS) and hand-held X-ray fluorescence (hXRF) and data assessment by use of principal component analysis and binary representations were selected. The results obtained allow to evaluate both the analytical method and the portable equipment used, as well as to classify the raw materials, the colouring agents and the opacifiers used. MRS analysis proved crucial for the identification of stone tesserae (ironstones, carbonate and siliciclastic rocks) and for the identification of the type of glasses used (soda-lime-silicate and lead type glasses) based on the analysis of two detached tesserae. hXRF analysis of the glass tesserae identified both colouring agents (Co, Cu, Pb, Zn) and opacifiers (calcium antimonate). The data obtained lend themselves to an assessment of the degradation process that threaten the integrity of the mosaic. The identification of tessera made of specific stone materials (especially ironstone) and of lead glass tesserae suggest the existence of a mosaic workshop in the Upper Guadalquivir (Eastern Andalusia, Spain).


Sign in / Sign up

Export Citation Format

Share Document